
Introduction to Linux - 1
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Introduction to Linux

Introduction to Linux - 2
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

License

© Applepie Solutions 2004-2008, Some Rights Reserved
Except where otherwise noted, this work is licensed under Creative Commons Attribution
Noncommercial Share Alike 3.0 Unported
You are free:
● to Share — to copy, distribute and transmit the work
● to Remix — to adapt the work
Under the following conditions:
● Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).
● Noncommercial. You may not use this work for commercial purposes.
● Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

● For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to
http://creativecommons.org/licenses/by-nc-sa/3.0/
● Any of the above conditions can be waived if you get permission from the copyright
holder.
● Nothing in this license impairs or restricts the author's moral rights.

Introduction to Linux - 3
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Contents
● Introduction

– What is Linux?
– A brief history of Linux
– Linux distributions
– Who is using Linux?

● Getting Started
– System Accounts
– Account Settings
– Connecting
– Copying files over the

network
– System documentation
– Exercise 1

● The Shell
– What is the shell?
– Choosing a shell
– Switching to a different

shell
– Navigating the filesystem
– Shell Variables
– Giving variables values
– Environment Variables
– Paths
– Some Useful Commands
– Exercise 2

● Advanced Shell Topics
– I/O Redirection
– Pipes
– Advanced Shell

Introduction to Linux - 4
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Contents
● Files

– Linux Files
– File Hierarchy Standard - /
– File Hierarchy Standard - /

usr
– File Hierarchy Standard - /

var
– ls command
– File permissions and

ownership
– File & directory commands
– Filename substitution
– Monitoring free space and

inodes
– Exercise 4

● Processes
– Processes and Threads
– Shell job control
– Listing processes
– Process listing variations
– Process states
– Monitoring processes
– Signals
– Exercise 5

● Working With Files
– OS File differences
– find
– grep
– Regular Expressions
– Exercise 6

Introduction to Linux - 5
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Contents
● Other Useful Commands

– Date and time
– More on viewing files
– Packing files
– Compressing files
– Scheduling
– Exercise 7

● Editing files
– Introduction
– Navigation in vi
– Cut and paste in vi
– Search and replace in vi
– Advanced vi
– Exercise 8

● Scripting
– Introduction
– Your first shell script
– hello worlds
– Running a script
– Shell variables
– Shell variables & quoting
– Special Variables
– Loops
– The if statement
– case and test
– Exit codes,functions
– Special devices
– sed & awk
– Shell configuration files
– Exercise 9

Introduction to Linux - 6
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Contents

● Networking
– Networking Concepts
– IP Addresses
– Devices and Tools
– Domain Name System
– Exercise 10

● The System
– The super-user account
– System log files
– Services
– Software packages
– RPM
– Exercise 11

● Developing on Linux
– C on Linux
– Java on Linux
– Other scripting languages
– Exercise 12

● Advanced SSH topics
– Keys
– Tunnelling

● In closing ...

Introduction to Linux - 7
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Introduction

Introduction to Linux - 8
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

What is Linux?

● Kernel
– 2.4.x
– 2.6.x

● Distributions
– Red Hat
– Novell / SuSE
– Debian

● GNU
– compilers
– libraries
– editors and other tools

● Linux is a free operating system (although some distributions do provide a traditional licensing
model).

● Linux provides a secure platform – including a kernel firewall, a secure use model (users, groups,
password-based authorisation) and support for advanced security models (LinuxSE and
capabilities).

● There is a lot of high quality software (both open source and commercial) available for the Linux
operating system from database software (including Oracle RDBMS) to application software
(including Sun's OpenOffice).

● The Linux kernel is highly-portable (currently available on 14 different architectures ranging from
big-iron such IBM's S390 to common platforms such as x86 and embedded platforms such as
SuperH).

● Linux is supported by large ISVs (Oracle, IBM and SAP) and leading vendors (IBM, Dell, HP).

Introduction to Linux - 9
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

A brief history of Linux

Sep 1983 – Richard Stallman announces the GNU Project
Apr 1991 – Linus Torvalds announces he's working on a hobby

OS
Sep 1991 – Linux Kernel 0.01
Mar 1994 – Linux Kernel 1.0 (i386)
Mar 1995 – Linux Kernel 1.2 (Alpha, Mips, Sparc)
June 1996 – Linux Kernel 2.0 (SMP, Tux the Penguin)
Jan 1999 – Linux Kernel 2.2 (64-bit, FAT32, NTFS)
Jan 2001 – Linux Kernel 2.4 (ISA PnP, PA-RISC, USB, PC Card)
Dec 2003 – Linux Kernel 2.6 (IA64, x86_64, em64t, embedded

systems, NUMA)

From: Linus Benedict Torvalds (torvalds@klaava.Helsinki.FI)
Subject: What would you like to see most in minix?

Newsgroups: comp.os.minix
Date: 1991-08-25 23:12:08 PST

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since april, and is starting to get ready. I'd like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I'll get something practical within a few months, and
I'd like to know what features most people would want. Any suggestions
are welcome, but I won't promise I'll implement them :-)

 Linus (torvalds@kruuna.helsinki.fi)

PS. Yes - it's free of any minix code, and it has a multi-threaded fs.
It is NOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that's all I have :-(.

Introduction to Linux - 10
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Linux distributions (1/2)

● Red Hat
– Enterprise Linux (AS, ES, WS, Desktop) v4
– Enterprise Linux (AS, ES, WS) v3
– Fedora Core

● Debian
– Stable (3.1 - Sarge)
– Testing (Etch)
– Unstable (Sid)
– Derivatives (Ubuntu, Xandros, Knoppix, Progeny)

Red Hat (http://www.redhat.com/)

RHEL v4 - release Feburary 2005 includes 2.6 kernel, ext3 qand lvm updates, security enhanced linux
compiler updates, gnome 2.8

RHEL v3 - introduced in September 2003

Enterprise Linux software has much longer support cycle (7 years)

Fedora is the proving ground for RHEL releases (effectively RHEL beta), available for free use but not
supported.

Debian (http://www.debian.org/)

The debian distributions are non-commerical. a volunteer project consisting of about 1000 active
developers packaging others peoples software and integrating it into a new distribution. Debian
makes a release every few years which they label stable. Debian's key feature is that it can be
installed and upgraded over the network with a very powerful tool for managing dependencies. It
is thus possible to track the current versions of Debian in development (testing and unstable).

Debian is used as a base for a number of other Linux Distributions (both commercial and non-
commercial). The most notable commercial ones are Ubuntu (http://www.ubuntu.com/) and
Xandros (http://www.xandros.com/). The Knoppix distribution used for system recovery, which
runs directly from the CD is also derived from Debian.

Introduction to Linux - 11
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Linux distributions (2/2)

● Novell / SuSE
– SuSE Linux Enterprise Server 10
– SuSE Linux Enterprise Server 9 (SP3)
– SuSE Linux Enterprise Desktop 10
– Novell Linux Desktop 9
– OpenSuSE 10.1

● Others
– Gentoo
– Mandriva
– Ubuntu
– Sun Java Desktop System
– Slackware
– Turbolinux

SuSE / Novell
http://www.novell.com/linux/

SuSE was taken over by Novell in 2003. The SuSE brand is still used for some distributions.
Novell branded Linux distributions consist of the core SuSE distribution and some
additional components or branding.

As with Red Hat, Novell provides support for it's Enterprise distributions for long periods (
http://support.novell.com/lifecycle/index.jsp) - general support for SuSE Enterprise runs
for 5 years.

SuSE has recently introduced OpenSuSE which is intended to be a similar project to Red
Hat's Fedora being a volunteer-driven testing ground for future releases of SuSE / Novell
Linux (http://en.opensuse.org/).

Others
There are a huge number of Linux distributions both commercial and non-commercial

intended for a myriad of uses ranging from desktop to server to system recovery or
security. http://lwn.net/Distributions/ lists 517 active distributions with a range of
purposes, languages and target platforms.

Introduction to Linux - 12
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Who is using Linux?

● Dot coms
– Google
– Amazon
– Paypal

● Financial
– Irish Stock Exchange
– First Trust Corporation
– Central Bank of India

● Entertainment
– Ticketmaster
– Pixar
– Industrial Light and Magic

The Google Linux Cluster
http://www.researchchannel.org/program/displayevent.asp?rid=1680

Linux slashes costs for bank giant
http://www.computerweekly.com/articles/article.asp?liArticleID=135436

Pixar switches from Sun to Intel
http://news.com.com/2100-1001-983898.html

Red Hat Success Stories
http://www.redhat.com/solutions/info/casestudies/

SuSE Success Stories
http://www.novell.com/success/

Netcraft Web Server Survey
http://news.netcraft.com/archives/web_server_survey.html

Who's using Debian?
http://www.debian.org/users/

Introduction to Linux - 13
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Getting Started

Introduction to Linux - 14
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

System Accounts

● Users
– uid
– username
– password

● Groups
– gid

● Files
– /etc/passwd and /etc/shadow
– /etc/group and /etc/gshadow

● Other authentication mechanisms
– LDAP
– Kerberos

A user account represents someone or something capable of using files on the system (can be either a
person or a system process).

A group account is a list of user accounts. Each user account has a main group and as many others as
is needed.

Users are defined in the /etc/passwd file. This file contains various information about users including
their login name, encrypted password, uid, gid, user's real name, home directory and shell.
Modern systems tend to store the users password in a separate file (/etc/shadow).

Groups are defined in /etc/group. This file contains the group name, group password, gid and a list
of users.

Users and groups provide the operating system with a way of controlling access to system resources
and maintaining an audit trail.

Linux systems can also use more advanced authentication systems such as kerberos or LDAP
authentication (e.g. Active Directory) by adding Pluggable Authentication Modules (PAM) to
the system.

Introduction to Linux - 15
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Account Settings

● Passwords
– choosing good passwords
– password expiry
– password security

● Shell
● Home directories

Each user account has a password. Different systems enforce different password policies but a good
password is generally hard to guess and not a simple word (like Password!).

The shell or command interpreter is the program that takes your commands and does something with
them. All user interaction with a Linux system is conducted through the shell (if using the console,
users of a graphical environment can interact with the system without using the shell although one
will still be associated with the user). There are a number of different shells available on a typical
Linux system which use slightly different syntax.

Each user account is assigned their own directory within which to store their files. This directory is
known as the home directory. Its location varies depending on the particular Linux version
(/home/username and /usr/users/username are common locations).

Introduction to Linux - 16
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Connecting

● Local
– the console

● Remote
– telnet

● telnet <hostname> [port]
– ssh

● ssh <username>@<hostname>
– rlogin, rsh

● rlogin -l <username> <hostname>

In order to use a Linux system you must either login to it from the console or connect to it over the
network. The console consists of one or more virtual terminals which can be accessed via a
keyboard and monitor (you can switch between virtual terminals using ALT-F1..Fn).

Connections over the network are also know as remote connections (versus local connections). There
are a number of standard protocols used to connect to systems. All of them allow you to connect
over a TCP/IP network such as the Internet. Once connected, you can enter commands on the
computer as if you were sitting at that computer. Normally, before you can execute any
commands, you need to login with your username and password.

The telnet command uses a simple text protocol for connecting to remote systems. The telnet
command is provided on most operating systems. Its big disadvantage is that it does not provide
any encryption during a session so all data including usernames and passwords can be read by
others on the network. The telnet command can also be very useful for diagnosing network
problems.

The ssh command provides secure access to systems over a network. It uses cryptographic technology
to encrypt any data you send (including usernames and passwords). You can also optionally use
public key authentication rather than sending passwords. The ssh suite also provides the scp and
sftp commands for secure copying of files.

The rlogin and rsh commands are another older plaintext technology which use the Berkeley rhosts
file for authentication and authorisation. The rhosts file contains a list of hostnmes from which a
connection to a server is allowed. If the rhosts file is unavailable, rlogin and rsh fall back to using
passwords like telnet.

Introduction to Linux - 17
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Copying files over the network

● ftp
– operation
– transfer mode
– anonymous ftp
– plaintext usernames and passwords

● sftp
– same interface as ftp
– encrypted usernames and passwords

● scp
● rcp

File Transfer Protocol (FTP) is one of the original methods used on unix systems to copy files from
one system another over the network. It uses a client/server model. When you wish to transfer
files, you (the client) connect to a server (the system you want to upload files to or download files
from) using the following syntax,

ftp <server name>

The server responds with prompts for a username and a password. Successful authentication places the
user at the ftp prompt,

ftp>

From here, a user can ls, cd, get <file> or put <file>. Multiple files can be sent or received
using mput <files> or mget <files>. It is recommended to always use binary transfer
mode (see file endings). When finished, signal to the server to close the connection.

The ftp command sends usernames and passwords in the clear over the network which is insecure.
anonymous ftp is a form of passwordless ftp.

The sftp command is a secure version of ftp built on top of ssh. It uses virtually the same syntax.

scp <filename> <username>@<hostname>:/tmp
rcp <filename> <username>@<hostname>:/tmp

Introduction to Linux - 18
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

System documentation (1/2)

● Distribution-specific documentation
– Administration and install guides
– User manuals
– Reference guides
– Release Notes

● man pages and the man command
– man [section] <page>
– man -k <topic>
– man -f <topic> or apropos <topic>
– man man!

Linux and UNIX systems in general provide a lot of online documentation in electronic formats.

All distributions are supplied with high quality manuals and reference documentation.

http://www.redhat.com/docs/manuals/enterprise/ provides guides for installation on a number of
platforms, a system administration guide, a general reference guide and a number of security
documents and release notes for each release of Red Hat Enterprise Linux.

Novell provides documentation for SuSE at http://www.novell.com/documentation/suse.html and
documentation for Novell Desktop Linux at http://www.novell.com/documentation/nld/ including
a quickstart guide, a deployment guide and guides for various components of the system including
KDE and GNOME.

Debian provide a full set of documentation including an installation guide, user manual and reference
at http://www.debian.org/doc/.

The original approach to providing information on UNIX systems was the man command. man

provides access to the information on commands, system calls, special files, file formats and
others. The man pages tend to contain lots of good information but are not always very user-
friendly. The man pages are split up into sections

1 Executable programs or shell commands
2 System calls (functions provided by the kernel)
3 Library calls (functions within system libraries)
4 Special files (usually found in /dev)
5 File formats and conventions eg /etc/passwd
6 Games
7 Macro packages and conventions eg man(7), groff(7).
8 System administration commands (usually only for root)

 9 Kernel routines [Non standard]

Introduction to Linux - 19
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

System documentation (2/2)

● GNU info
● <command> -h, --help
● The Linux Documentation Project

– http://www.tldp.org/
– FAQs, HOWTOs, Guides

● Project specific documentation for Samba, Apache and others.

The GNU project distribute most of their manuals and reference pages in the info format. The standard
tool for reading info files is the info command which isn't very user-friendly. The info pages tend
to contain a lot of good information so it is worth getting familiar with the info command (or
trying one of the alternatives such as tkinfo).

Most commands have some basic help built-in which can be accessed by invoking the command with
either -h or –help. If in doubt, try both.

The Linux Documentation Project is a volunteer driven project found on the web at
http://ww.tldp.org/. The project has assembled a large collection of high quality HOWTOs,
Guides and FAQs.

Finally, a number of the larger applications used on Linux including Samba, the Apache webserver
and Apache Tomcat have their own websites dedicated to providing documentation and support
for these applications.

Samba
http://www.samba.org/samba/docs/

Apache Webserver
http://httpd.apache.org/docs-project/

Apache Tomcat
http://jakarta.apache.org/tomcat/

Introduction to Linux - 20
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 1.1 – Getting started

1) Start up telnet on your local machine.
2) Start up putty on your local machine.
3) Login to the server using

● ssh
● telnet

4) Upload a test file from your local system to the server
using each of the following methods,

● ftp
● sftp
● scp

How to start telnet
● Click on Windows start button
● Select Run Command ...
● Type in telnet

Putty
● Putty is a free windows ssh client available to download from

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

How to exit various commands
● telnet – type CTRL-] to enter command mode nd type quit
● man – press q
● info – CTRL-x + CTRL-c

How to view files
● when logged in, type more <filename> (q to exit).

Software for transferring files
● Filezilla (ftp and sftp) - http://filezilla.sourceforge.net/
● Winscp (scp and sftp) - http://winscp.net

The full Putty install kit also includes a command-line scp command called pscp.

Introduction to Linux - 21
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 1.2 – Getting started

5) Use man to retrieve information on each of the
following:

 the mail command
 the passwd file (not the passwd command)
 the printf system call (not the printf command)

6) Use info to review the info primer.
7) Find the following on TLDP:

 The Unix and Internet Fundamentals HOWTO
 Advanced Bash-Scripting Guide
 The Linux FAQ

Introduction to Linux - 22
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

The Shell

Introduction to Linux - 23
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

What is the shell?

● Command-line interpreter
● Scripting environment
● Features

– built-in commands
– aliases
– variables
– pipes
– input/output redirection
– history
– tab completion

● Shell commands and variables are CASE SENSITIVE

The purpose of any shell or command-line interpreter is to provide the user with a way of interacting
with the operating system. Every shell allows a user to run operating system commands. Shells
also usually provide a minimal set of built-in commands to perform basic tasks (such as
navigating the filesystem and managing files). Shells also allow common command sequences to
be aliased to shorter strings.

Shells use variables to store information temporarily and pass it between processes. A variable is a
named storage location in system memory. Each shell also has a set of special variables known as
environment variables which control the behaviour of the shell and allow the shell to return
information about the system.

Shells can also be used to write scripts which are interpreted by the system when they are executed.
Shell scripts are typically used to perform basic system management or text processing tasks.

There are different flavours of shell including the bourne shell, the c shell and the korn shell. They
all possess the same basic characteristics but differ in the the details of their built-in commands,
variables and syntax used in their scripts.

Most shells store a history of the most recently used commands which can be retrieved later on (often
using the arrow keys). The history is usually written to a temporary file in the user's home
directory.

Some shells include a feature called tab-completion – if you type part of a command or filename at
the prompt, pressing the tab key will cause the shell to either complete the command or filename
if there is only one possible completion or list the alternatives if there are multiple possible
completions.

Introduction to Linux - 24
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Choosing a shell

● Bourne shells
– sh
– bash

● C shells
– csh
– tcsh

● Korn Shell
● Others

sh, the bourne shell was the original UNIX system shell. It contains all the basic features of a shell
and is commonly used in shell scripts due to its portability across Linux and many different UNIX
systems.

bash, the bourne again shell is a successor to the bourne shell developed by the GNU project. It
contains all the features found in the bourne shell and incorporates some aspects of both the korn
shell and the c shell. Bash has become the de facto standard shell on Linux systems and is a
reasonable alternative to sh for scripting if the script is only intended for Linux systems.

The c shell, csh uses a command syntax similar to the C Programming language. Like the bourne shell,
it is found on practically all Linux and UNIX systems. It is not recommended for shell scripting
due to problems file descriptors, flow control, white space, signals and quoting

Tcsh, is an enhanced, but completely compatible version of csh. Any script written in csh will behave
exactly the same when executed with tcsh. Unfortunately this also means it has the same
limitations as csh for shell scripting. Tcsh is a very user-friendly shell and contains a similar
feature set to bash.

ksh, the korn shell is a bourne shell derivative with many enhancements. It is common on UNIX
systems but a version is also available on most Linux systems (though not as common as either
bash or tcsh). There are two major versions of the Korn shell in common use, the 1988 version
(ksh88) and the 1993 version (ksh93). Many systems only provide the 1988 version because of
licensing issues with the 1993 version. There is also a shell called the Public Domain Korn Shell
(pdksh), which implements most ksh88 features and some ksh93 features – this is the typical Korn
shell found on Linux systems.

Introduction to Linux - 25
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Switching to a different shell

● Changing shells
– chsh
– /etc/shells

● Restricted shell
– changing directory
– changing shell
– changing shell variables

● Changing user details
– chfn
– .plan

Any user can change their shell to any of the other shells available on the system using the chsh
command. Typically, a user can only change to one of the permitted shells listed in /etc/shells.

Accounts may sometimes be configured to use a restricted shell which is one of a number of shells
which provide less functionality than usual including not being able to change directories, change
your shell, alter shell variables and so on.

The chfn program can also be used to change various properties of your system account including
various contact details such as your name, phone number and office number.

Introduction to Linux - 26
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

● The filesystem tree

Navigating the filesystem

lib

/

binhome...

● Commands
– pwd
– cd
– ls

● Inodes

The concept of a filesystem tree is at the core of Linux and UNIX systems. All files are organised in a
tree structure with the root directory or / at the top of the tree. Directories are organised
hierarchically underneath this. There are 2 special directories . and .. which occur at every level of
the tree. These are used as shorthand to specify the current directory (.) and the parent
directory - the directory next closest to the root in the tree (..). The Linux filesystem tree contains
a number of standard directories and sub-directories.

The pwd command prints the current working directory (cwd). Most shells include this as a built-in
but the system also provides a pwd command. Some versions of the pwd command differentiate
between the physical directory while others follow symbolic links.

The cd command changes the current working directory to the one specified or the one defined in the
$HOME variable if no directory is specified. The cd command can use relative or absolute paths.
If relative paths are specified, the behaviour of the cd command is controlled by the $CDPATH
variable. $CDPATH defaults to the current directory.

The ls command lists the contents of the current working directory (files and directories). The
command takes a wide range of switches which enhance the listing. -l (use a long listing format
displaying permissions, owner, group, size, modification date and filename) and -a (display file
entries beginning with .) are 2 useful switches.

At the filesystem level, each file is represented by a data-structure called an inode which various fields
including file mode, owner information, size, timestamps and a series of pointers to the blocks
containing the actual file data.

Introduction to Linux - 27
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Shell Variables

● Shell variables
● Environment variables
● Viewing variables with echo
● Listing variables

– set
– export
– setenv
– env

An ordinary shell variable comes into existence when a value is assigned to it. The method of
assigning a value to a variable differs slightly between the bourne shell family and the c-shell
family.

Linux maintains a special collection of variables called the environment. When a new process is
created, this environment is copied from its parent. A new process is created every time a
command is run from the shell prompt. An extra step is usually needed to set an environment
variable with the syntax also varying between shells.

Ordinary shell variables and environment variables can be viewed using the echo command as follows

echo $VARIABLE_NAME

To view all variables that have been set in the bourne shell, use the set command with no arguments.
To view only environment variables, use the export command with no arguments.

To view all variables that been set in the c shell, use the set command with no arguments. To view
only environment variables, use the setenv command.

The env command can also be used to view your environment variables.

Introduction to Linux - 28
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Giving variables values

● In the bourne shell
– VAR=value
– export VAR
– export VAR=value

● In the c-shell
– set VAR=value
– setenv ENV value
– synchronised variables

● unset

With the bourne shell and derivatives (sh, bash, ksh) – a variable is set using the following syntax

VARIABLE_NAME=value

If you wish to make this variable available to the environment – the variable needs to be exported
using the following syntax

export VARIABLE_NAME

The bash and korn shells allow these two steps to be combined as

export VARIABLE_NAME=value

The c-shell uses a slightly different syntax for setting variables as follows

set VARIABLE_NAME = value

To make a c-shell variable available to the environment requires the use of a different command as
follows

setenv ENVIRONMENT_VARIABLE_NAME value

tcsh synchronises some shell and environment variables when one or the other is changed including
path and PATH, cwd and PWD, term and TERM and others. It is generally best to set the shell
variable and let the shell set the environment variable.

Introduction to Linux - 29
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Environment Variables

● PATH
● MANPATH
● PS1 or prompt
● HOME
● PRINTER
● TERM
● EDITOR

There are many environment variables which both control various aspects of shell behaviour and
return information about parts of the shell's configuration. The following are some of the more
common useful ones. A full list of a shell's environment variables can be found in the man page
for that shell.

PATH – This is a colon separated list of directories in which to search for commands. When a user
types a command at the prompt, if it does not start with /, the shell will search each directory in the
PATH for this command and execute it if it finds it.

e.g.
$ PATH=/usr/gnu/bin:/usr/local/bin:/bin:/usr/bin:.
$ export PATH
> set path (/bin /usr/bin .)

PS1 – this shell sets the format of the shell prompt (and includes various special parameters). In the c
shell, the equivalent variable is prompt.

HOME – Initialised to the home directory of the user. This controls the default behaviour of cd and
some properties of the prompt.

PRINTER – this sets the default printer for printing commands to use.

TERM – This sets the terminal type which controls the behaviour of various output programs.

EDITOR – this variables specifies the editor used by commands like passwd

Introduction to Linux - 30
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Paths

● Absolute paths
– /bin/ls
– /etc/passwd

● Relative paths
– ./ls
– ../ls
– ls

● Security problems with relative paths
● Use the which command to verify your PATH
● System administrators and scripts should always use absolute

paths!

Files, including commands and directories, can be specified using either absolute paths or relative
paths.

An absolute path is one that describes the file using the entire path to that file in the filesystem tree.
Absolute paths can be recognised by the fact that they start with /

e.g. /bin/ls works from the / directory, to the bin subdirectory and then invokes the ls file in the bin
subdirectory.

Relative paths describe the file using a path relative to the shell's current location in the filesystem
(and may also available of the shell's knowledge of special variables such as PATH).

e.g ../../bin/ls moves up through 2 levels of the filesystem and then descends into the bin subdirectory
(which may or may not be /bin depending on the shell's current working directory) from where it
invokes the ls file.

A special case of relative paths is where a command is typed at the shell prompt without specifying
any path. The shell typically searches the directories listed in the PATH environment variable for
a file matching the specified command. The first file found in this search is invoked.

You can use the which command to test which command or executable will be invoked if you type a
command at the shell prompt – if it finds a matching command in your PATH, it will display the
full path to the command.

For security reasons, system administrators or administration programs and scripts should always use
absolute paths for commands. There are a number of potential security problems with using
relative paths or relying on the contents of PATH.

Introduction to Linux - 31
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Some Useful Commands

● Printing output to the screen
– echo

● Viewing files
– cat
– more or less

● Identifying files
– file

● Finding commands
– which

● Command-line options
– short (-h)
– long (--help)

The cat command is used to concatenate files and print them to the screen. With no
arguments, cat displays standard input to standard output (which is of limited
use). By passing one or more files as arguments to cat, the contents of these files
are combined and sent to standard output. Redirection and pipes can be used to
send output to destinations other than standard output. Note that it can be difficult
to read files which span more than one screen with cat.

more and less perform the same function as cat but pause after displaying each
screen of information. less is a more advanced version of more, providing
enhancements such as the ability to move backwards and forwards in a file, faster
startup times and better terminal support. You can use page up, page down,
space and the arrow keys to move around a file viewed with less or more. To exit
press q or ESC.

The file command determines the type of a file by performing a set of standard tests
against the file contents. File can distinguish text files in various formats and
character sets, executables in various formats and a myriad of data files.

Many commands used on Linux take options which modify the behaviour of the
command or enable additional features. Options are usually specified after the
command name. Most GNU commands take a short cryptic form of an option or a
longer more user-friendly form of the same option e.g. -h or –help. Short options
are usually identified by a single preceding dash and long options by a pair of
preceding dashes.

Introduction to Linux - 32
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 2.1 – The Shell

1) Navigate to the following directories and list the
contents of the directory,

 /home
 /usr/bin
 /etc

2) Use absolute paths to list the contents of those
directories without navigating to them first.

3) Display the contents of the following variables and
explain what they mean:

 SHELL
 USER
 PWD

The command to list files in a directory is ls (more information on this in the next section) – the basic
usage is ls (to list the contents of the current working directory) or ls <directory> to list the
contents of the specified directory.

Introduction to Linux - 33
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 2.2 – The Shell

4) Use a system command to determine what type of file
or directory each of the following is:

 /
 /etc/passwd
 /bin/ls
 /lib/libc-2.3.5.so

5) View the contents of /etc/passwd with cat, more and
less.

6) Change your PATH variable to “/” and try running cat,
more and less again. Explain what is happening.

7) Change your PS1 (bash) or prompt (tcsh) variable.

.

Introduction to Linux - 34
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Advanced Shell Topics

Introduction to Linux - 35
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

I/O Redirection

● Standard input (file descriptor 0, stdin)
● Standard output (file descriptor 1, stdout)
● Standard error (file descriptor 2, stderr)
● Redirection operators

– [n]> file
– <[n] file
– [n]>> file

● Redirections are processed in the order they appear, from left
to right.

By default, the shell takes input from the keyboard and sends output to the screen. The keyboard is
called the standard input (stdin, 0) device. The screen is called the standard output (stdout, 1)
device. There is also another output device called standard error (stderr, 2) which is also
normally sent to the screen.

All commands default to taking input from standard input, sending normal output to standard output
and sending error messages to standard error.

I/O redirection involves changing the default behaviour and taking output from a file, command,
program or script and sending it as input to another file, command, program or script. The
following redirection operators can be used to change a command's behaviour.

● > and >> are used to redirect stdout to a file. With either operator, if the file doesn't exist it will be
created. With >, if the file exists, it is overwritten. With >>, if the file exists it will be appended to.

● 2> is used to redirect stderr to somewhere else.
● < is used to redirect stdin from a file.

Examples:
Write the output of the date command to a file called date.txt
$ date > date.txt

Append the output of the cal command to a file called date.txt
$ cal >> date.txt

Use the file data.txt as the input to the sort command rather than stdin.
$ sort < data.txt

Use data.txt as input and send the output to the file sorted-data.txt rather than stdout.
$ sort < data.txt > sorted-data.txt

Introduction to Linux - 36
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Pipes

● |
● chaining commands
● xargs
● named pipes (fifos)

Pipes are also used for I/O redirection.

They behave in a similar fashion to > but are specifically used to redirect the output of a command to
the input of another command.

This redirection allows multiple commands to be chained together, each one performing an operation
on the output of the previous command e.g.

cat file.txt | tr a-z A-Z | sort

the cat command outputs the file file.txt which is input to the tr command which changes the case of
each line from lowercase to uppercase. This uppercase output is used as input to the sort
command which sorts the lines and outputs the result to stdout. The result could just as easily have
been redirected to a file.

ps aux | grep java | grep -v grep

the ps command lists all processes running on the system. This list is sent to the grep command which
lists lines matching the specified pattern (java in this case). The results of this command, are in
turn sent to another command which lists only lines that do not match the pattern (-v option to
grep).

Sometimes, when using pipes, it is possible to overflow the command-line buffer of a command by
passing it too much information. So, with a chain like

commandA | commandB

If commandA generates a lot of output, it can overload commandB's input buffer (usually resulting in
an error message like Too many arguments). The xargs is intended to circumvent this problem by
only sending as much output to commandB as it can handle and invoking it multiple times if
necessary to process all of the output from commandA e.g.

commandA | xargs commandB

Introduction to Linux - 37
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 3 – Advanced Shell

1) Write a command to list the contents of /etc/passwd to
a file in /var/tmp (such as mytest).

2) Write a command to list the contents of /etc/group to
the same file used in 1, without overwriting the original
content.

3) Write a command to list the contents of /etc/passwd to
a file in /var/tmp while redirecting any errors to a
different file in /var/tmp.

4) Explain what the following will do (you may need to use
the man command to check what a particular command
does):

 cat /etc/passwd | tr a-z A-Z
 ls /etc | sort | tr A-Z a-z

Introduction to Linux - 38
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Files

Introduction to Linux - 39
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Linux Files

● Everything is a file!
– Docs, pictures, executables
– Directories
– Devices
– Kernel internals
– .dot files
– hard links
– soft (symbolic) links

● Filesystem Hierarchy Standard (FHS)
● Hard and soft links

On a Linux system, everything is a file. This includes the usual files such as documents, images, and
commands. It also includes devices, kernel internals and system settings. Representing everything
as a file is a programming abstraction which allows users to manipulate various parts of the system
using a standard interface.

The filesystem tree is organised in a standard way known as the Filesystem Hierarchy Standard
(FHS) which allows users of any Linux distribution (or developers of applications for Linux
systems) to always find the same kinds of files in the same location.

A file's inode (the data structure on the disk that represents the file) can have more than one filename
associated with it (a filename is just an entry in a directory data structure). The inode for the file
keeps a count of how many filenames are associated with it (the link count). You can add
additional filenames pointing to an inode by hard linking the new filename against the original
filename. This increases the link count of the file. The ln command is used to link, passing the
<original filename> and the <new filename> as arguments. A file is not deleted from the
filesystem until its link count is 0.

e.g.
ln original_file.txt new_file.txt

You can also create soft links or symbolic links to files. These are more like shortcuts in the
Windows operating system, they are aliases to the original files. You can create with them with ln
-s. The original file can still be deleted when it has one or more soft links pointing to it.

e.g.
ln -s original_file.txt softlink_to_file.txt

Introduction to Linux - 40
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

File Hierarchy Standard - /

● /
● /bin
● /boot
● /dev
● /etc
● /home
● /lib

The current version of the FHS is 2.3 (29-Jan-2004). It is an evolving standard developed by the Linux
community to address the needs of users, programmers, system administrators and software
vendors. It describes the key features of the filesystem including where specific types of files
should be found and the purpose of various system directories and sub-directories. The FHS is a
component of a larger set of standards – the Linux Standard Base (LSB). The following contains
some excerpts from FHS 2.3

/ - The contents of the root filesystem must be adequate to boot, restore, recover, and/or repair the
system.

/bin - contains commands that are required when no other filesystem is available. This can include
commands used by system administrators and users.

/boot - contains files used in the boot process.

/dev – contains special device files.

/etc - contains configuration files. A configuration file is a local file used to control the operation of a
command or system program.

/home – An optional location for users home directories. Alternatives like /usr/users are also
permitted by the standard.

/lib - contains those shared libraries used to boot the system and run the commands in the root
filesystem (the commands in /bin and /sbin).

Introduction to Linux - 41
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

File Hierarchy Standard - /

● /mnt (and the mount command)
● /opt
● /root
● /sbin
● /tmp
● /usr
● /var

/mnt – this directory is used as a temporary location for mounting other filesystems.

/opt – intended to be used for the installation of add-on application software packages. Applications
are typically installed in a subdirectory named after the application.

/root – this is the recommended default location for user root's home directory.

/sbin – the location of commands used for system administration. This directory contains commands
and other files essential for booting, restoring, recovering and/or repairing the system.

/tmp – this directory is used by programs which require somewhere to create (typically small)
temporary files.

/usr – the /usr hierarchy of directories is intended as a store of shareable, read-only data. Any
information which is specific to a particular system or changes over time is stored elsewhere.

/var – the /var hierarchy of directories is intended as a store of writable data. Files that are written to
during normal system operation are usually stored under here rather than under /usr. Some files
under /var are shareable, some non-shareable.

Introduction to Linux - 42
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

File Hierarchy Standard - /usr

● /usr/bin
● /usr/include
● /usr/lib
● /usr/local
● /usr/sbin
● /usr/share
● /usr/src

/usr/bin – the main location for user commands.

/usr/include – the location of the system include files for the C programming language.

/usr/lib – the main location for system libraries, object files and some system commands that aren't
called directly by users or scripts.

/usr/local – a hierarchy used for software and data installed only on this system or used by a small
group of systems. Distribution software is never installed into this hierarchy so it is a safe
location in which to install add-ons such as the JDK (safe in the sense that subsequent upgrades
to the distribution will not overwrite or erase software installed under /usr/local).

/usr/sbin – this directory contains any system commands that aren't needed for system booting,
repair, recovery or restore. Only commands used exclusively by the system administrator should
be installed here.

/usr/share – this directory is intended to store read-only, architecture independent data files. This
directory could be shared between multiple systems running the same OS version. /usr/share is
not intended to be shared between different versions of the same OS or different OSs.

/usr/src – this is an optional directory in which to place read-only copies of source code. The Linux
kernel source code is typically installed here by Linux distributions.

Introduction to Linux - 43
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

File Hierarchy Standard - /var

● /var/cache
● /var/lib
● /var/lock
● /var/log
● /var/mail
● /var/opt
● /var/run
● /var/spool
● /var/tmp

/var/cache - intended for use by applications to store cached data. This should only be data which
the application can safely regenerate if deleted.

/var/lib – subdirectories under /var/lib are intended to store variable state information used by
applications and the system itself. This data stored here is typically critical to the operation of a
program but changes over time.

/var/lock – used to store system and application-specific lock files.

/var/log – used to store system and application log-files. The main system logs are normally stored
in /var/log while other system applications store their logs in appropriate subdirectories.

/var/mail – this contains the system mail spool or user mailboxes where user mail is initially
delivered.

/var/opt – this is used by packages installed in /opt when generating variable data.

/var/run – used to store run-time system and application data. This directory and any subdirectories
usually have their contents erased at system boot.

/var/spool – this is a staging area for application data which the application has yet to be process.
Data in this directory is usually managed by the application and will not be normally be deleted
at boot time.

/var/tmp – this directory is intended for storing temporary files which are deleted at boot-time (as
opposed to /tmp). /var/tmp should always be used for large temporary files.

Introduction to Linux - 44
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

ls command

ls -la /bin

total 3404

drwxr-xr-x 2 root root 4096 Oct 13 18:46 .

drwxr-xr-x 25 root root 4096 Sep 3 20:05 ..

-rwxr-xr-x 1 root root 2684 Dec 24 2002 arch

-rwxr-xr-x 1 root root 82312 Apr 3 2002 ash

-rwxr-xr-x 1 root root 511400 Apr 8 2002 bash

-rwxr-xr-x 1 root root 16504 Jul 16 12:37 cat

-rwxr-xr-x 1 root root 31404 Jul 16 12:37 chgrp

-rwxr-xr-x 1 root root 31212 Jul 16 12:37 chmod

-rwxr-xr-x 1 root root 34572 Jul 16 12:37 chown

-rwxr-xr-x 1 root root 51212 Jul 16 12:37 cp

-rwxr-xr-x 1 root root 49092 Nov 24 2001 cpio

The ls command has many options which control its output. The most common options used with it are
-l and -a which tell the ls command to display more information about each file and display
entries starting with . (dot) respectively.

Files starting with . are described as dot-file and are usually used to store per-user system or
application settings. Most applications create a dot-file to store their settings.

The total 3034 refers to the total space used in this directory in kilobytes – this does not include space
used by the contents of any subdirectories.

The -i option can be used to view the inode numbers for each file.

Introduction to Linux - 45
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

permissions

ls command

total 3404

drwxr-xr-x 2 root root 4096 Oct 13 18:46 .

drwxr-xr-x 25 root root 4096 Sep 3 20:05 ..

-rwxr-xr-x 1 root root 2684 Dec 24 2002 arch

-rwxr-xr-x 1 root root 82312 Apr 3 2002 ash

-rwxr-xr-x 1 root root 511400 Apr 8 2002 bash

-rwxr-xr-x 1 root root 16504 Jul 16 12:37 cat

-rwxr-xr-x 1 root root 31404 Jul 16 12:37 chgrp

-rwxr-xr-x 1 root root 31212 Jul 16 12:37 chmod

-rwxr-xr-x 1 root root 34572 Jul 16 12:37 chown

-rwxr-xr-x 1 root root 51212 Jul 16 12:37 cp

-rwxr-xr-x 1 root root 49092 Nov 24 2001 cpio

The permissions column contains information about what users have access to a particular file and
what access each type of users have.

 1 2 3 4 5 6 7 8 9 10
 File Type User Permissions Group Permissions Other Permissions
 read write execute read write execute read write execute
 d r w x r - x r - x

The first letter (d in this case) describes the type of the file. Types include a normal file (-), a directory
(d), a block device (b), a character device (c), a symbolic link (l), a socket (s) or a named pipe
(p)..

After this, the permissions on the file are specified in 3 groups of 3. The first group describes the
permissions that the owner of the file has. The second group describes the permissions members of
the file's group have. The third group describes the permissions that others have.

For each group, the first letter describes the read permission (r if read permission is granted, -
otherwise), the second letter describes the write permission (w if write permission is granted, -
otherwise) and execute permission (x if execute permission has been granted, - otherwise). Note
that in the case of directories, execute permission signifies that the directory can be accessed by
that party, while for commands, the execute permission indicates that the command can be
executed.

Introduction to Linux - 46
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

ls command

owner and group

total 3404

drwxr-xr-x 2 root root 4096 Oct 13 18:46 .

drwxr-xr-x 25 root root 4096 Sep 3 20:05 ..

-rwxr-xr-x 1 root root 2684 Dec 24 2002 arch

-rwxr-xr-x 1 root root 82312 Apr 3 2002 ash

-rwxr-xr-x 1 root root 511400 Apr 8 2002 bash

-rwxr-xr-x 1 root root 16504 Jul 16 12:37 cat

-rwxr-xr-x 1 root root 31404 Jul 16 12:37 chgrp

-rwxr-xr-x 1 root root 31212 Jul 16 12:37 chmod

-rwxr-xr-x 1 root root 34572 Jul 16 12:37 chown

-rwxr-xr-x 1 root root 51212 Jul 16 12:37 cp

-rwxr-xr-x 1 root root 49092 Nov 24 2001 cpio

There can be only one owner of a file. The owner can be any of the users of a system or one of the
special system accounts.

The group can be used to provide limited access to files.

Note also that the column before the owner and group contains the link count for each file (ref: hard
links).

Introduction to Linux - 47
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

ls command

size in bytes

total 3404

drwxr-xr-x 2 root root 4096 Oct 13 18:46 .

drwxr-xr-x 25 root root 4096 Sep 3 20:05 ..

-rwxr-xr-x 1 root root 2684 Dec 24 2002 arch

-rwxr-xr-x 1 root root 82312 Apr 3 2002 ash

-rwxr-xr-x 1 root root 511400 Apr 8 2002 bash

-rwxr-xr-x 1 root root 16504 Jul 16 12:37 cat

-rwxr-xr-x 1 root root 31404 Jul 16 12:37 chgrp

-rwxr-xr-x 1 root root 31212 Jul 16 12:37 chmod

-rwxr-xr-x 1 root root 34572 Jul 16 12:37 chown

-rwxr-xr-x 1 root root 51212 Jul 16 12:37 cp

-rwxr-xr-x 1 root root 49092 Nov 24 2001 cpio

ls on Linux systems defaults to listing the size of each file in bytes. Use of the -h option changes this to
more user-friendly output (which varies between kilobytes, megabytes, gigabytes and terabytes
depending on the actually size of the files).

Introduction to Linux - 48
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

ls command

modification date (normally!)

total 3404

drwxr-xr-x 2 root root 4096 Oct 13 18:46 .

drwxr-xr-x 25 root root 4096 Sep 3 20:05 ..

-rwxr-xr-x 1 root root 2684 Dec 24 2002 arch

-rwxr-xr-x 1 root root 82312 Apr 3 2002 ash

-rwxr-xr-x 1 root root 511400 Apr 8 2002 bash

-rwxr-xr-x 1 root root 16504 Jul 16 12:37 cat

-rwxr-xr-x 1 root root 31404 Jul 16 12:37 chgrp

-rwxr-xr-x 1 root root 31212 Jul 16 12:37 chmod

-rwxr-xr-x 1 root root 34572 Jul 16 12:37 chown

-rwxr-xr-x 1 root root 51212 Jul 16 12:37 cp

-rwxr-xr-x 1 root root 49092 Nov 24 2001 cpio

The date displayed in the ls -l output is generally the date on which the file was last modified but
various options to ls can change this to other values (including the file creation date). Note that
the format changes with the age of the file.

Introduction to Linux - 49
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

ls command

file name

total 3404

drwxr-xr-x 2 root root 4096 Oct 13 18:46 .

drwxr-xr-x 25 root root 4096 Sep 3 20:05 ..

-rwxr-xr-x 1 root root 2684 Dec 24 2002 arch

-rwxr-xr-x 1 root root 82312 Apr 3 2002 ash

-rwxr-xr-x 1 root root 511400 Apr 8 2002 bash

-rwxr-xr-x 1 root root 16504 Jul 16 12:37 cat

-rwxr-xr-x 1 root root 31404 Jul 16 12:37 chgrp

-rwxr-xr-x 1 root root 31212 Jul 16 12:37 chmod

-rwxr-xr-x 1 root root 34572 Jul 16 12:37 chown

-rwxr-xr-x 1 root root 51212 Jul 16 12:37 cp

-rwxr-xr-x 1 root root 49092 Nov 24 2001 cpio

The last column in the ls -l output is the actual name of the file.

Introduction to Linux - 50
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

File permissions and ownership (1/2)

● Setting permissions
– Symbolic mode
chmod <groups> <add/remove/set> <permissions> <file>
e.g.
chmod u=rwx,g=rx,o=rx foo
chmod u=r,g=r,o= foo

– Octal mode
chmod <mode> <file>
e.g.
chmod 0755 foo
chmod 0440 foo

The chmod command is used to change file permissions. It can be used in two different ways -
symbolic mode or octal mode.

Using chmod in symbolic mode, it is invoked with the following format

chmod <groups> <add/remove/set> <permissions> <file>

groups is one or more of u,g,o and a where
● u is the user that owns the file
● g is other users in the file's group
● o is other users not in the file's group
● a is all users.

Permissions are added using the + operator, removed using the – operator or set (over-riding any
existing permissions) using the = operator.

Permissions consists of one or more of the letters rwxXstugo for read (r), write (w), execute (x),
execute only if the file is a directory or already has execute permission for some user (X), set
user or group ID on execution (s), sticky (t), the permissions granted to the owner of the file
(u), the permissions granted to the group of the file (g) or the permissions granted to others
(o).

octal mode is a more powerful but less intuitive way of using chmod. Using chmod in octal mode, it
is invoked with the following format

chmod <octal mode> <file>

octal mode is a series of 1-4 octal digits with values of 4, 2, 1 or 0. Missing digits are treated as 0.
Multiple permissions are set at the same time by adding the values together. The first digit selects
the set user ID (4), set group ID (2) and stick (1). The second digit selects permissions for the
owner – read (4), write (2) and execute (1). The third digit selects permissions for the group
(with the same values as the owner digit) and the fourth digit selects permissions for others.

Introduction to Linux - 51
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

File permissions and ownership (2/2)

● Changing file ownership
– chown

● Changing file group
– chgrp

● Changing file attributes recursively with -R

● Special permissions
– The sticky bit
– The setuid/setgid bit
– File owner

File ownership is managed by 2 commands, chown for changing the file owner and chgrp for
changing the file group.

chown and chgrp have a similar syntax. The are called as

<command name> <owner or group> <file>

for example,

chown smulcahy foo
chgrp users foo

You can invoke any of chmod, chown or chgrp against a directory and have settings changed
recursively on all files and subdirectories within the directory by using the -R flag. Use this with
caution, it can be difficult to undo the results of such an operation.

In addition to the normal read, write and execute permissions you can apply to files, there are 2 special
permission bits which can be applied to files.

The sticky bit normally only has an affect when applied to directories. When it is set on a directory,
any files in that directory can only be renamed or deleted by their owner (or the super-user).
Without the sticky bit, any user with write permissions on a directory can rename or delete files in
that directory. The sticky bit is useful for world-writable directories such as /tmp and /var/tmp.

There is a facility in Linux systems where a running command can make a system call to change either
the user it is running as (setuid()) or the group it is running as (setgid()). Only the super-user can
make these system calls. The operating system also allows files with the setuid or setgid bits set to
run as their owner/group regardless of who invokes them.

Introduction to Linux - 52
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

File & directory commands

● File creation and timestamp updates
– touch

● Copying and moving files
– cp
– mv

● Removing files and directories
– rm

● Directories
– mkdir
– rmdir

The touch command updates an existing files access and modification timestamps to the current
time. If the specified file does not exist, a new empty file is created.

The cp command is used to copy files. When invoked as cp SOURCE DEST, the SOURCE file is
copied a new file called DEST. If DEST is a directory, SOURCE can be a list of one or more files
which will be copied to the DEST directory.

cp -R can be used to copy entire directories and their contents.

The mv command is used to move or rename files. It uses the same syntax as the cp command, that is,
mv SOURCE DEST renames the file called SOURCE to a file called DEST. Similarly, if DEST is
a directory, SOURCE can be a list of one or more files (or directories) which will be moved to the
DEST directory.

The rm command removes or deletes each file passed to the command as an argument. The rm
command takes a number of options which should be used with care (NB rm -rf).

The mkdir command is used to create directories specified as arguments.

The rmdir command is used to remove empty directories specified as arguments.

Introduction to Linux - 53
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Filename substitution

● Metacharacters
– *
– ?

● Character ranges
– [...]
– -
– ^

● Home directory shortcut
– ~

There are a number of symbols used by all of the common shells on Linux which have a special
meaning to the shell. These special symbols are known as wildcards or metacharacters and
provide a simple form of pattern matching (sometimes also called globbing or filename
substitution). They provide a short-cut when you wish to apply a command to many files.

The most common wildcards which are supported by both bourne shell derivatives and c-shell
derivatives are,

* - the asterisk matches any string including the null string
? - the question mark matches any single character

[...] - the square brackets surrounding one or more characters matches any one of the enclosed
characters

When using [], the “-” symbol is used to specify a range of characters e.g. [a-c] will match a, b and c.
The “^” symbol is used to negate the range e.g. [^a-c] will match everything but a, b and c.

~ - the tilde symbol matches to the user's home directory

Introduction to Linux - 54
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Filename substitution (examples)

1. cd ~

2. ls /usr/bin/b*

3. ls /usr/bin/*zip*

4. ls /usr/bin/b[abc]

5. ls /usr/bin/b[a-c]

6. ls /usr/bin/?grep

1. Change directory to the user's home directory.

2. List all files with b as their fire letter (including a file called “b”).

3. List all files containing the string “zip” (including a file called “zip”).

4. List any files called “ba”, “bb” or “bc”.

1. List any files called “ba”, “bb” or “bc” (same as 4 but using the range symbol).

2. List all files starting with any digit followed by the string grep (will match “egrep”, “fgrep” and

“zgrep” but not “grep”).

Introduction to Linux - 55
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Monitoring free space and inodes

● Files and directories
– du

● Mounted filesystems
– df

● -h option improves readability

The du command summarises the space usage of each file specified as an argument to it. It can used to
check the space usage of both files and directories (it defaults to analysing directories). Usage is
reported in kilobytes by default, the -h option makes the output for larger files more readable.

The df command reports filesystem disk usage. By default, df lists the space usage on all mounted
filesystems. The -h is also supported by df.

Introduction to Linux - 56
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 4.1 – Files

1) Create a file in your home directory containing a listing
of all files in /bin that have filenames starting with “b”.

2) Create a file in your home directory containing a listing
of all files in /bin that have filenames not starting with
“b”.

3) Create a number of test files in your home directory
with the following permissions (use a naming
convention such as exercise3a, exercise 3b and so on):
a) readable and writeable by you only
b) readable and executable by you only
c) readable, writeable and executable by you and

readable and writeable by everyone else.

Introduction to Linux - 57
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 4.2 – Files

4) Explain the permissions on the following files:
 /bin/ls
 /boot
 /var/mail

5) Report the space used by your home directory and the
free space available on your filesystems.

6) Where should large temporary files be placed according
to the FHS?

7) Where would you expect a 3rd party application
following the FHS to install its files to?

Introduction to Linux - 58
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Processes

Introduction to Linux - 59
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Processes and Threads

● Heavyweight process
● Lightweight process
● Speed of context switch
● Speed of creation
● Ease of sharing data
● Security
● NPTL

Multitasking operating systems use the concept of a process. A process is simply an instance of a
running program. More modern systems have introduced the concept of heavyweight processes
and lightweight processes. Traditional processes are the same as heavyweight processes.
Lightweight processes are also known as threads.

A process can be said to consist of code, data and at least one thread of execution. Early UNIX
process models contained only one thread of execution. Each process used its own virtual
address space securely separating its code and data from all other programs executing on the
system.

This separation comes at the price of a relatively large amount of time required to create new
processes (since the memory needed by the process needs to be organised). In addition, when a
system context switches between executing programs, it can take a relatively large amount of time
to unload the data and code of a process and load the new process's data and code. Running
multiple threads in the same context eliminates some of these problems.

Linux combines these two approaches – its fork() system call uses copy on write semantics to
minimise the cost of process creation (a child process is initially given a pointer to its parent's
memory which reduces the startup and context switching costs).

In addition to the lightweight process model, Linux provides a number of other threading libraries
including a Native POSIX Thread Library (NPTL) for Linux. This attempts to address some of
the shortcomings found in trying to map traditional UNIX thread models to the Linux model with
early versions of Java for example.

Introduction to Linux - 60
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Shell job control

● foreground jobs
● background jobs (&)
● listing jobs
● switching
● suspending
● interrupting

Most shells include at keast some basic job control which allows a user to create and manage multiple
processes from a single prompt.

When a command is executed at the prompt, it is said to run in the foreground. The shell suspends
and won't process any more input until a foreground job finishes (a job can be interrupted using
CTRL-C). A job can also be suspended using CTRL-Z.

A command can also be run in the background. The command runs as normal but the shell will
continue to accept additional input and can run other commands while the background jobs
complete. A job can be run in the background by putting the & symbol at the end of the command.
The shell normally displays the job number and process number when a background job is
started.

The jobs shell command lists out all running and suspended background jobs.

A particular job can be brought to the foreground using the fg shell command and the job number
preceded by the % symbol. A suspended background job can be resumed using the bg shell
command.

Introduction to Linux - 61
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Listing processes

ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 1492 104 ? S Aug28 0:04 init [2]
root 2 0.0 0.0 0 0 ? SW Aug28 0:00 [keventd]
root 3 0.0 0.0 0 0 ? SWN Aug28 0:00 [ksoftirqd_CPU0]
root 4 0.0 0.0 0 0 ? SW Aug28 6:05 [kswapd]
root 5 0.0 0.0 0 0 ? SW Aug28 0:24 [bdflush]
root 6 0.0 0.0 0 0 ? SW Aug28 0:10 [kupdated]
root 222 0.0 0.0 0 0 ? SW Aug28 0:10 [kjournald]
root 223 0.0 0.0 0 0 ? SW Aug28 0:00 [kjournald]
root 294 0.0 0.0 0 0 ? SW Aug28 0:00 [khubd]
daemon 1508 0.0 0.0 1604 64 ? S Aug28 0:00 /sbin/portmap
root 1564 0.0 0.2 1628 360 ? S Aug28 0:56 /sbin/syslogd
root 1603 0.0 0.0 2152 80 ? S Aug28 0:02 /sbin/klogd
root 1607 0.0 1.8 12644 2324 ? S Aug28 0:00 /usr/sbin/named

The ps command provides a more complete view of the processes on a Linux system. Using ps, you
can view all processes on the system rather than just those commands that you have executed from
the prompt.

The ps command takes a large number of options to customise its output and include various fields. ps
ux gives a reasonably informative listing of a users' processes including various details. ps aux
uses the same output format to display all processes on the system.

Two other options to note are f for forest and w for wide.

ps aux columns

● USER is the user name of the process owner.
● PID is the process ID, a number that uniquely identifies a process (for the lifetime of that

process).
● %CPU The average processor usage of the process.
● %MEM The percentage of physical memory used by the process.
● VSZ The amount of virtual memory allocated to the process in kilobytes (This will typically be

much larger than the actual memory usage).
● RSS The resident set size – the amount of memory actually in use by the process.
● TTY The terminal (if any) that the process is attached.
● STAT The current process state (see next slide).
● START The start time or date of the process. This is the 24 hour clock time for the first 24 hours

and the start date after that.
● TIME The amount of time this process has been executing on the CPU for.
● COMMAND The command that the process is executing ([thread]).

Introduction to Linux - 62
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Process listing variations

● ps -elf
● ps
● ps u
● ps ux
● ps x -o user,pid,ppid,cmd

Introduction to Linux - 63
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Process states

● Runnable (R)
● Sleeping (S)
● Uninterruptible Sleep (D)
● Traced or stopped (T)
● Defunct or zombie (Z)
● Additional BSD status codes

– No resident pages (W)
– High priority process (<)
– Low priority process (N)
– Process with pages locked in mem (L)

A process can be in various states on a Linux system. Typically the kernel scheduler gives each
process a short period of execution time and then gives the next process a chance. This period of
execution time is known as a quantum or timeslice. On Linux, it is normally about 100ms (but
this varies widely depending on the kernel version, the system hardware and the scheduler in use).

When a process is ready to to be executed, it is added to the run queue and its state is set to runnable
(R). If a process requests some resource which isn't currently available, such as access to an I/O
device, it is put to sleep (S) until this resource becomes available.

Processes in uninterruptible sleep (D) have marked themselves as uninterruptible while performing
some critical task (typically used by device drivers)or accessing a resource that must not be left in
an unknown state. When the process is finished with this resource, it removes the uninterruptible
flag. This flag is typically used by kernel related threads manipulating internal buffers. A process
which appears in a D state in a process listing is usually suffering from an I/O problem of some
sort – processes should only become uninterruptible for very brief periods of time while accessing
I/O etc.

Stopped processes or processes being traced will be flagged as (T).

Zombie (Z) or defunct processes occur when the parent process of a child process has not called the
wait() system call. A zombie process is actually only an entry in the process table which won't be
cleared until wait() is called – they don't use any memory or cpu. A large number of zombie
processes may indicate a problem on the system (parent processes dying for some reason).

Introduction to Linux - 64
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Monitoring processes

● top cpu processes
● cpu state information
● similar details to ps
● process priority and nice

The top command is another useful alternative for monitoring processes running on the system. It
provides a continuously updating list of the top processes in terms of cpu usage.

Top displays a section of statistics relating to CPU and memory usage and a list of the active processes
on the system. It displays similar information to ps.

The PID field as the same as ps, providing the process id for that particular process. The USER,
again, is the owner of the process. PR is the priority of a task. Tasks with a numerically lower
priority value are given preferential treatment by the task scheduler.

The nice command can be used to change the priority of a process. The NI column reflects any
changes made to a process using this approach.

VIRT is the size of a processes virtual image in kilobytes. It includes a processes code, data, shared
libraries and any memory pages which have been swapped out. The RES column lists the
resident size of a process in kilobytes. This is the physical memory currently in use by a task. The
SWAP column lists the value of memory pages which have been swapped out in kilobytes.

VIRT = SWAP + RES

S is the process state as per ps.

%CPU and %MEM show the percentage of processor usage and physical memory usage of a
process.

Introduction to Linux - 65
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Signals

● What are they?
● What do they do?
● Sending signals via the keyboard
● Sending signals with the kill command
● Sending signals with system calls
● Common signals

The operating system uses a mechanism called signaling to send short messages to processes when it
wishes to notify a process of an important event. Signals interrupt the normal execution of a
process and force it to handle the signal immediately on receiving it. Typical events which might
require a signal to be sent to a process include floating point exceptions, termination signal
from the user, suspend signals from the user, I/O errors and so on. Signals are defined as
integer values. A full list of signals is available in signal(7).

Processes handle signals by passing execution to a signal handler routine which performs some
specific activity in response to the signal. Typical actions a signal handler might perform include
killing child processes and removing temporary files before terminating its own process. Some
signals cannot be caught (SIGKILL, SIGSTOP).

When you use CTRL-C to interrupt a job or CTRL-Z to suspend a job, you are actually sending that
process a signal (SIGINT in the case of CTRL-C and SIGTSTP in the case of CTRL-Z).

Arbitrary signals can be sent to any process using the kill command. The normal syntax is kill
<signal> <PID>. Running kill with the -l option lists the available signals. A common use of kill
is to send a SIGINT to a runaway process,

kill -9 1234

You can resume a suspended process using either the fg or bg commands. Both commands send a
SIGCONT to the process.

Signals can also be sent programatically using the signal() system call..

Introduction to Linux - 66
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 5 – Processes

1) Review the man page for ps and do the following,
 display only your processes
 display all processes

2) Identify some high priority tasks running on the
system.

3) Identify some processor and memory intensive tasks.
4) Start a simple process of your own and experiment with

running it in the background and bringing it to the
foreground (see notes for example process to run).

5) Kill the process while it is running in the background.

Save the following scripts to files in your home directory using the following command
cat > <filename>.sh

-------------------------cut here----------------------------
#!/bin/sh
loop1.sh
#
while [1]
do

echo “hello $USER”
sleep 5

done
-------------------------cut here----------------------------
#!/bin/sh
loop2.sh
#
while [1]
do

echo “hi $USER”
sleep 5

done

Note that these scripts need to be executable by you before you can run them.

Introduction to Linux - 67
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Working With Files

Introduction to Linux - 68
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

OS File differences

● EOL
● EOF
● Managing

– ascii transfer mode
– binary transfer mode
– todos / fromdos
– dos2unix / unix2dos
– tr command

Linux/Unix systems, Windows/DOS systems and Mac systems all use slightly different conventions to
signify the end-of-line (EOL) and end-of-file (EOF).

Linux/Unix systems use “\n” for EOL

Windows/DOS systems “\r\n” for EOL

Mac systems use “\r” for EOL

“\n” is also known as Line Feed (LF) and has an ascii value of 10.
“\r” is also known as Carriage Return (CR) and has an ascii value of 13.

Windows also uses a the SUB symbol (which has an ascii value of 26) to indicate an end-of-file
(EOF). Linux/Unix systems and Mac systems don't use a special end-of-file character.

When transferring text files between different operating systems you need to be aware of these
differences and manage them. There are lots of different ways of managing these differences.
When transferring files using ftp – ascii transfer mode will translate files on the fly. Commands
such as tr can be used to manually translate the file from one format to another (or transfer the
files in binary mode and let the application handle the format). Linux distributions usually come
with one of a number of utilities for converting between the different formats – commands include
fromdos and todos or dos2unix and unix2dos.

Example using tr,
tr -d '\r' < file.txt

Introduction to Linux - 69
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

find – finding files on filesystems

● find command
– searching on filenames
– searching on file properties

● type
● age
● size
● permissions

– doing something with what you find
● exec

● locate command

The find command searches for files in a directory hierarchy. It can search on various properties of a
file. The most basic search is against a filename, e.g.

find / -name ls

Searches the filesystem hierarchy that starts at / for all files called “ls”. Find supports wildcards, so to
find any files whose name starts with “ls”,

find / -name ls*

More advanced searches are possible against such file properties as type (one of block device,
character device, directory, named pipe, regular file, symbolic link, and socket), file access
or modification time (atime and mtime), file size, file permissions, owner or group (perm,
user, group) and many others. e.g.

find /var -type d
find /var/tmp -mtime +1
find /var/log -size +250k
find /home -user root

The default behaviour of find is to display any files it finds (-print) but it can also execute arbitrary
commands on files it finds when -exec is specified,

find /home -type f -user root -exec ls -la {} \;

It can often be useful to pipe the output of find to the xargs command to do some processing (why are
we not using wc directly?) e.g.

find / -name '*.c' | xargs wc -l

The locate command is also found on most Linux system. It is very fast as it queries a database of files
on the system which is rebuilt periodically (usually overnight to minimise the impact on the
system). The results of locate are dependent on how recently the database was updated.

Introduction to Linux - 70
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

grep - finding strings in files

● basics
● counting
● inverted matches
● searching many files

The grep command searches files for strings. In basic use, the command is passed a string to search
for and one or more files to search in. It displays any matching lines it finds e.g.

grep Mozilla /var/log/apache/access.log

will search the file /var/log/apache/access.log for any lines containing the string “Mozilla” (but only
“Mozilla”) and display those lines. Like most other Linux commands, grep is case-sensitive by
default but you can over-ride this with the -i option. Using grep -i in the above example would
also print any lines containing “mozilla”, “mOzIlLa” and so on.

If you want to count the number of matching lines without necessarily printing them out, the -c option
can be used.

grep -c Mozilla /var/log/apache/access.log

will search the file /var/log/apache/access.log for any occurrences of the string “Mozilla” (but only
“Mozilla”) and print a count of how many lines matched.

If you want to search for lines that don't match a particular string, you can use the -v option which
inverts the match, so

grep -v Mozilla /var/log/apache/access.log

displays only lines which don't contain the string “Mozilla”.

grep can search many files at once by using a wildcard. If you are searching many files at the same
time, the -l option may be useful to display only the names of files which contain a matching line,
e.g

grep -l Mozilla /var/log/apache/*

Introduction to Linux - 71
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Regular Expressions

● String matching patterns
● Easier to write than to read!

● Regular expressions consist of 2 parts

(single character matches) + (repetition characters)

● Widely supported
– Shell
– Perl
– Java
– C/C++

Regular expressions are a more sophisticated approach to pattern matching for strings than that
provided by wildcards. Regular expressions are supported, with minor variations, on various
Linux commands and in a number of programming languages including Perl and Java.

Note that it is usually easier to write a regular expression than to read one so they do represent a
potential maintenance problem – they are certainly very useful for Linux command-line activities
though.

The basic building blocks of regular expressions are the patterns that match a single character. These
are typically followed by a repetition character.

Single Character Regular Expressions
a Most characters, including all letters and digits, are regular

expressions that match themselves
. matches any single character
[abcd] The []'s match any single character between the brackets
[a-d] The – in []'s matches any single character in that range
[^abcd] The ^ in []'s matches any single character except those

between the brackets.

Repetition Characters
? Match the preceding character 0 or 1 times.
* Match the preceding character 0 or more times
+ Match the preceding character 1 or more times
{n} Match the preceding character exactly n times
{n,} Match the preceding character at least n times
{n,m} Match the preceding character at least n and no more than
 m times

Others
^ Match start of line
$ Match end of line

Introduction to Linux - 72
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Regular Expression Examples

1. a+

2. .*

3. [foo]+

4. Mo?zilla

5. [a-zA-Z]{2,5}

6. [Mozilla]{4,}

1. Matches “a”, “aa”, “aaa” and so on.

2. Matches anything from “” (empty string) to “ASD£%$%:@”.

3. Matches “f”, “ff”, “fff”, “o”, “oo”, “ooo” , “fo”, “foo”, “ffoo” and so on.

4. Matches “Mozilla”, “Mzilla” but not “Moozilla”.

5. Matches “aa”, “Aa”, “of”, “foooo” but not “f” or “ffffff”.

6. Matches “Mozilla, “Mzilla”, “Moozilla” and “zool” but not “zoo”.

Can test these expressions using the following perl script (again, cat > <filename>.pl to save this to a
file, make executable and run with ./<filename>.pl 'EXPRESSION').

#!/usr/bin/perl
#
#
use strict;
my @strings = ("foo", "a", "aaa", "aa", "ff", "", "ffoo", "f", "o",

"oo", "xiuy23193\$\|", "Mozilla", "Mzilla", "Moozilla", "zool",
"zoo");

my $pattern = $ARGV[0];
my $string;
foreach $string (@strings) {
 if ($string =~ /^${pattern}$/) {
 printf("matched $string\n");
 }
}

Introduction to Linux - 73
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 6 – Files and Regex

1) Create a text file on your Windows system and transfer
it to the Linux system using ftp in ascii and binary
transfer modes. Repeat using sftp.

2) Count the occurrences of the word “kernel” in all files
starting with the letter “m” (hint: find and grep).

3) Write a single regular expression to match the following
sequences in a file:

 aaa
 bbbb
 bbb
 aaaa

Introduction to Linux - 74
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Other Useful Commands

Introduction to Linux - 75
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Date and time

● date
– format specifiers

● cal
● time <command>

– real time
– user time
– system time

● sleep <time to pause for>

The date command displays the current date and time in a wide variety of formats. By default, the
date command simply displays the current date and time in local time format. Format specifiers
allow the output to be customised e.g.

date Thu Oct 28 23:18:27 IST 2004 (local time)
date +%d-%b-%Y 28-Oct-2004
date +%H:%M 23:18
date +%U 43 (week of year)
date +%s 1099002149 (seconds since epoch)

The cal command simply displays calendars (by month or year).

The time command has nothing to do with displaying the date or time. It is used to run commands
and display statistics about the system resources used by the command while executing,
including the real and system time it took to run. e.g.

time grep testing /etc/*
/etc/lynx.cfg:# http://www.nyu.edu without testing www.nyu.com).

Lynx will try to
real 0m0.067s
user 0m0.024s
sys 0m0.042s

The command took 0.067 seconds of real time to execute and the CPU spent 0.024 seconds in user
code and 0.042 seconds in the kernel on behalf of the user code

The sleep command pauses for a no. of seconds, minutes or hours (useful in scripts).

Introduction to Linux - 76
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

More on viewing files

● Looking at the start or end of files
– head
– tail

● Monitoring files as they grow
– tail -f
– less + SHIFT-f

● File statistics
– wc

● Sorting file contents
– sort

Linux systems include a collection of commands for viewing text files in different ways.

The head command displays the first few lines of a file. The default is 10 but this can be changed with
the -n option.

The tail command does the same job but from the bottom of the file. The -n option can again be used
to control exactly how many lines are displayed. The +n option can be used to tell tail to start from
the nth line in the file, rather than the last one. The tail command can also be used to monitor a
growing log-file using the -f option. This can be useful when debugging a system.

As an aside, the less command provides the same functionality as tail -f. When viewing a file with
less, you can start tailing it by pressing SHIFT-f.

The wc command is used to display statistics about text files including line counts, word counts, and
byte counts of files.

The sort command is used to sort lines of text files in various ways including by dictionary order (-
d), case insensitively (-f), numerically (-g) and so on. This is particular useful when combined
with redirection and pipes.

Introduction to Linux - 77
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Packing files

● tar
– tar -cvf
– tar -xvf
– tar -tvf

● cpio
– cpio -v
– cpio -id

It can be useful to pack files for transport or archiving. There are two traditional tools used on Linux
(and most UNIX systems) for packaging files. Archive files are normally named with an extension
of the command used.

The tar command was originally used to archive filesystems to tapes. It can still be used for this
purpose although there are more sophisticated tools for tape backups. It is normally used these
days to create tar archives directly on filesystems.

To create a tar file

tar -c -f <tar file name> <files/directories to package>

To unpack a tar-file

tar -x -f <tar file name>

The cpio command is not commonly used any more although you may occasionally encounter cpio
archives which need to be extracted, the following commands illustrate how to create and extract
them for completeness. Note that these commands use I/O redirection and pipes.

To archive the contents of the current directory:

ls | cpio -v > <cpio file name>

To extract the files:

cpio -id < <cpio file name>

Introduction to Linux - 78
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Compressing files

● gzip
– standard
– pretty good compression in short time

● bzip2
– pretty standard
– very good compression in medium time

● compress
– traditional unix tool

● zip (or jar)
– traditional dos/windows tool

● Combining tar with gzip or bzip2

As well as packaging files and directories into archives, it can be useful to compress them to save
space.

The traditional compression command on Linux systems is gzip. The file to be compressed is passed
as an argument and gzip generates a compressed version of the file with a .gz extension. gzip takes
a number of options including ones which specify what kind of compression to use (including –
best or –fast). Gzipped files can be decompressed using the gunzip command. Gzip uses Lempel-
Ziv coding (LZ77).

More recently, a better compression tool has been introduced in the form bzip2. It is used in the same
way as the gzip command and generates files with a .bz extension. Bzipped files can be
decompressed with bunzip2. bzip2 uses the Burrows-Wheeler block sorting text compression
algorithm and Huffman coding. It usually gives better compression (on the order of 10-20%) at a
cost of more system resources and time compared to gzip.

You may occasionally encounter files with a .Z extension, these have typically been produced with the
traditional unix compression command – compress (verify this with the file command!). They can
be extracted by running compress -d on the file.

The zip format commonly found on Windows systems (and used in Java jar files) is also supported on
Linux systems via the zip and unzip commands. Java's jar command uses the the zip file format
so it can be used to extract normal zip files.

When using tar, the packing/unpacking and compression/decompression steps can be integrated with
either gzip or bzip2 using the -z and -j options respectively.

Introduction to Linux - 79
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Scheduling

● Running jobs once at some future time
– at

● Running jobs once when the system is under-used
– batch

● Running jobs regularly
– cron

0 7 * * * ~/bin/daily-backup.sh
0 7 * * 1 ~/bin/weekly-backup.sh
0 7 1 * * ~/bin/monthly-backup.sh

Linux provides a number of facilities to run commands at some time in the future without requiring
user interaction at that time. The two main approaches use the at command and the cron facility.

The at command is intended to run commands once at a particular time, for example, if you wanted to
start a large compilation during the middle of the night when it wouldn't inconvenience other users
of the system.

An at job is scheduled using the at time syntax where time can be in a number of formats including
HH:MM, midnight, noon, teatime, month-name day year, MMDDYY, MM/DD/YY, MM.DD.YY,
now + time (where time is specified in units of minutes, hours, days or weeks).

The at command then prompts for the command(s) to be run and input is terminated with CTRL-D.
Any output resulting from the command is emailed to the user. Pending at jobs an be viewed with
the atq command. Jobs can be removed with the atrm command.

e.g.
$ at midnight
at> /bin/ls
at> CTRL-D
job 1 at Tue Mar 14 00:00:00 2006

The batch command is a variant of at which runs a scheduled job when the system load falls below 1.5

The cron facility is used to run recurring tasks on a periodic basis, for example, system backups are
usually run through the cron facility. Jobs are scheduled by adding an entry to the users crontab
file with the command crontab -e. The format of the file is

<minute> <hour> <day of month> <month> <day of week> <command>

e.g.
$ crontab -e
0 7 * * * ~/bin/daily-backup.sh
(exit editor)

Schedules the /bin/daily-backup.sh script to be run at 0700 every day.

Introduction to Linux - 80
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 7 – Commands

1) Time the ls command and explain the various output
fields.

2) Create a tar-file of your home directory.
3) Time both gzip and bzip2 compressing this tar-file and

comment on the differences found.
4) Schedule a one-off job removing the compressed files

in 5 minutes time.
5) Explain the following cron entries

– 25 4 * * 1 w
– * * * * * /bin/monitor.sh
– 0 * * * * /bin/wall /0.txt
– 5 9-17 * * 1-5 /bin/work

Introduction to Linux - 81
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Editing files

Introduction to Linux - 82
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Introduction

● Typical editors on Linux systems
– vi / vim
– emacs / xemacs

● Starting vi
● Buffers
● vi modes

– command mode
– insert mode
– switching modes

● Quitting vi

The vi text editor can be found on practically all Linux systems. There are more user-friendly and
arguably more powerful text editors but anyone using Linux should be familiar with at least the
basics of using vi. There are a wide range of vi-like editors all of which have the same basic
characteristics.

To start using vi, invoke it at the command line as vi filename. If filename doesn't exist, vi will
create it.

When you start vi, a copy of the file you are editing is placed into a buffer. The buffer is not written
back to your file until you explicitly tell vi (details below).

The vi editor uses different modes to allow the user to perform different tasks. When you start the vi
editor, it is in command mode. This is used to issue commands to the editor, move around the
file, load and save files, quit and so on. To begin inserting text you must switch to insert mode by
pressing “i”. Most vi clones will display –INSERT-- at the bottom of the screen to indicate the
new mode.

When in insert mode, any keystrokes input are placed in the file. To switch back to command mode at
any time press the ESC key.

Most commands in command mode start with “:”. There are various options for exiting depending on
whether you wish to save what you've input so far,

:q – quit vi
:q! - quit vi without prompting to save changes
:wq or ZZ or :x – save changes and quit

Introduction to Linux - 83
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Navigation in vi

● Traditional navigation
● Cursor keys
● Paging
● Advanced navigation

– start of line / end of line
– next word
– previous word
– start of file / end of file
– specifying particular lines

Navigation around a file is achieved while in command mode.

Traditionally vi has used the h,j,k and l keys to navigate around a file as follows:
h moves left one character
j moves down one character
k moves up one character
l moves right one character

Most newer versions of vi also support the cursor (arrow) keys for navigation.

You can also move through a file a page at a time using the traditional commands:
CTRL-F – move forward one page
CTRL-B – move back one page
CTRL-D move forward (down) one half page
CTRL-U move back (up) one half page

Page up and page down are supported on most modern vi clones.

There are various advanced navigation commands in vi also including:
0 – move to the start of the current line
$ - move to the end of the current line
w – move to the start of the next word
b – move to the start of the previous word
:0 – move to the first line of the file
:$ move to the last line of the file

To move to a specific line in the file, you use :n where n is the line number you want to jump to.

Introduction to Linux - 84
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Cut and paste in vi

● Copy (yank)
– single lines
– multiple lines

● Paste
● Cut (delete)

– lines
– characters

● Inserting files

Cutting and pasting in vi is normal done in terms of lines. You can mark blocks of text within lines for
cutting and pasting but it is normally easier to cut and paste the line(s). All text manipulating is
done in command mode.

To copy (or yank in vi terminology) a line you use yy. Multiple lines can be copied by putting the
number of lines before the yy e.g. 5yy will copy the current line the cursor is on and the 4 that
follow.

These lines can be pasted to the cursors current location using p.

Cutting (or deleting) is done with the dd command. Specifying a number before the dd again causes it
to process multiple lines.

Deletion can be performed at a character level using the x command. Specifying a number before the x
again causes it to process multiple characters.

Any deleted characters or lines can be pasted back to the cursors current position using the p
command.

To insert the contents of another file into the current buffer, use the :r filename command where
filename is the file whose contents you want to insert.

Introduction to Linux - 85
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Search and replace in vi

● Simple search
– repeating
– backwards

● Simple find and replace
● Advanced search
● Regular expressions

To perform a simple text search of the current buffer use the /phrase command where phrase is the
string you want to search for. vi will automatically jump to the next occurrence of that string. To
continue searching from that point for the same string, press / again.

The search can also be performed backwards in the file by using the ? command instead of / (?phrase
searches backwards for phrase and ? on its own repeats the search for the previous phrase).

You can also do a search and replace on the contents of a file using the :s command. The syntax is a
little more complex:

:s/string to find/string to replace it with/ (does a search and replace on the current line)

e.g.
:s/foo/blah/

:1,$ s/string to find/string to replace it with/ (does a search and replace from start to end of file)

e.g.
:1,$ s/foo/blah/

will replace each occurrence of the string “foo” with the string “blah”. The simplest form of the search
and replace command only replaces the first occurrence of the string on each line it finds. To get it
to replace all occurrences of the string on each line requires a slight change to the command,

:s/string to find/string to replace it with/g

Advanced searches can be performed by restricting the search to particular lines of the file.

Note also that both search and search and replace can use regular expressions for more complex
matches.

Introduction to Linux - 86
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Advanced vi

● Undo
● Starting editing on a particular line
● Replace mode

You can undo the previous command using u or :u. Some versions of vi allow multiple undos while
others only allow the most recent change to be undone. An undone command can be redone with
CTRL-R.

When editing a file with vi, you can automatically start on a particular line using the following syntax

vi +n filename

where n is the line number you want to start editing on.

Vi includes an alternative to insert mode in the replace mode accessed from the command mode
with the R command. In this mode, any text input overwrites the existing text at the cursor.

Introduction to Linux - 87
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 8 - Editing

1) Create a text file containing a few sentences of text.
2) Copy a few lines of the file.
3) Use search and replace to replace all occurrences of the

word “the” in your file with the string “xxxx”.
4) Copy /etc/passwd to a file in /var/tmp and practice

navigating around it.
5) Replace all non-letter characters in a copy of

/etc/passwd with the letter 'X.

[Additional Commands exercise]
● Schedule a regular job using cron to back up your home

directory to a compressed archive in /var/tmp. This job
should run at 0500 every day except Sunday. Ensure
that no-one else can view or extract the file.

Introduction to Linux - 88
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Scripting

Introduction to Linux - 89
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Introduction

● When to use shell scripts
– system maintenance
– batch operations
– easily automated repetitive tasks

● When not to use them
– webserver scripts (CGI)
– high security jobs
– heavily loaded systems

● Alternatives
– Perl
– Python

Shell scripts are a convenient tool for various system administration tasks. They are generally well
suited to specific small tasks. As a general rule of thumb, if a shell script is exceeding a page or
two, you should consider re-writing it in more sophisticated scripting language (like Perl or
Python).

Shell scripts can be quickly put together and prototyped. Since they are interpreted they will always
be slower than a compiled program (but are probably fast enough for most tasks). Large shell
scripts can present a maintenance problem.

Do use scripts to automate system management tasks.

Don't use shell scripts on systems or for tasks where security is important – scripts are general not very
secure. Remember also that anyone that can run a script can view the contents of that script so
passwords or other secrets should never be stored in scripts (the same probably applies to most
other interpreted and compiled languages).

Introduction to Linux - 90
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Your first shell script

● #!/bin/sh
● Comments
● External commands
● Shell builtins

– alias, bg, cd, echo, ...
● Shell constructs

– if, for, while, ...
● Execute permissions
● &&
● ||

A shell script is just a collection of commands which you want to execute together. More complex
shell scripts can use some of the programming language type constructs offered by shells.

The first line of any shell script needs to start with the shebang - #!<path to shell> this is a piece of
magic used by Linux to figure out how to execute the script. A bourne shell script will start with
#!/bin/sh, a bash shell script will start with #!/bin/bash and so on. without the #!, you would need
to execute the script by passing it as an argument to the sh or bash invoked directly e.g.

sh script.sh

Since bourne shell programming is the most portable, the rest of notes and examples in this section
will use bourne shell syntax. More powerful shell scripts that are slightly less portable can be
created using bash. Shell scripts can be created with any of the other shells including tcsh but it is
not generally recommended.

The # symbol is used for comments. On any given line, anything after a # is ignored and treated as a
comment.

Any valid Linux command is usable within a shell script. The most portable shell scripts will only use
basic commands which are guaranteed to be on practically all Linux systems. It is also generally
recommended to use absolute paths to commands rather than rely on a users PATH being set
correctly (alternatively, you can explicitly set a PATH at the start of the script).

In order to execute a shell script, it needs to have the execute permission bit(s) set. Unlike compiled
programs, shell scripts must also have the read permission bit(s) set for any user that wishes to
execute the script.

&& is a logical AND operator and || is a logical || operator. These can be used to ensure commands
only run if prior commands also succeeded (with &&) or only if prior commands did not succeed
(||).

cd /var/tmp/foo && rm * [why is this better than cd /var/tmp/foo; rm * ?]

Introduction to Linux - 91
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

hello worlds

#!/bin/sh
this is a hello world script
echo “hello world”

#!/bin/sh
this is another hello world
script
/bin/echo “hello world”

Introduction to Linux - 92
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Running a script

● #!
● Running scripts through the shell command
● Debugging scripts

-x
-v

Executable text-files with #!<shell> as their first line can be executed from the command-line. In
addition, any shell script (with or without a #!) can be executed by passing it as an argument to a
shell command e.g.

bash script.sh

Debugging is also possible with shell scripts by invoking the shell with the -x or -v options (either in
the #! line or by call the shell directly).

-v displays each line of the shell script as it is being run by the shell

-x displays each line of the shell and any arguments as they are being executed. The -x output is
generally the most useful for debugging script

Example

#!/bin/sh -x
if [date > /dev/null]
then
 echo "the date command works!"
else
 echo "the date command doesn't work."
fi
./foo.sh
+ '[' date ']'
+ echo 'the date command works!'
the date command works!

Introduction to Linux - 93
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Shell variables

● Setting
● Using
● Rules for naming
● All variables of type string

Variables an be used in shell scripts the same way they are used in interactive shells.

Variables are set using the same syntax as at the prompt
i.e.

VARIABLE=value

e.g.

foo=10

Be careful not to put spaces on either side of the “=”. If the value needs to contain spaces, use quotes
(“) around the entire value.

Variables can be accessed by preceding the variable name with the $ symbol.
e.g.

echo $foo

would display

10

Valid variable names start with an alphanumeric character or the _ symbol followed by zero or more
alphanumeric characters (do not use symbols such as $, ? or * in variable names). Variable names
are case sensitive so $foo is not the same as $FOO.

Introduction to Linux - 94
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Shell variables & quoting

● Single quote - '
● Double quote - “
● Back quote - `

When setting variables in scripts (and at the command-line), it may sometimes be necessary to quote
the value as explained previously. The different quote character cause some different behaviors.

When a value is surrounded by single quotes ('), you are explicitly telling the shell to not manipulate
the string between the quotes. e.g.

foo='this is the value of foo'
echo $foo
this is the value of foo

When a value is surrounded by double quote (“) the shell will expand any variables or backslash
sequences in the string between the quotes e.g.

foo='this is the value of foo'
bar=”this is $foo”
echo $bar
this is this is the value of foo

When a value is surrounded by back quotes (`) the shell will attempt to execute the string between
the back quotes and replace the string with the output of the command. e.g.

foo=”the time is `date`”
echo $foo
the time is Thu Nov 4 23:02:57 GMT 2004

There can sometimes be a performance improvement from using back quotes rather than other
methods, contrast the time taken to run the following:

time find /etc -name *.conf -exec grep foo {} \;
time grep foo `find /etc -name *.conf`

Introduction to Linux - 95
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Special Variables

● $0
● $1 - $n
● $#
● $*
● $@
● Backslash - \

As well as the standard special shell variables (such as $HOME, $PATH, $SHELL and so on), shell
scripting in particular also uses a few special variables to handle arguments to shell scripts.

$0 always contains the full path to the shell script itself.

$1-$n contain the arguments to the script (some versions of sh may restrict n to 9 although bash
doesn't have this limit).

$# contains the total number of arguments passed to the script

$* and $@ contain the same information in slightly different formats. The both contain the values for
all arguments to the script. $* is a single string of all these values i.e. “$1 $2 $3 $4 ...” while $@ is
a list of all the values in double quotes i.e. “$1” “$2” “$3” ...

The backslash character - \ is also known as the escape character and is used to instruct the shell or
a command to treat the character immediately after it as a normal character, even if it is normally a
special character to the shell e.g.

echo \$0
touch \\foo
mkdir this\ is\ a\ directory

Introduction to Linux - 96
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Loops

● for VARIABLE in LIST
do

BODY
done

● while EXPRESSION
do
BODY

done
● until EXPRESSION

do
BODY

done

The bourne shell supports variations of the loop constructs found in most modern programming
languages. A common problem in loop constructs and shell scripts in general is missing
whitespace where the shell is expecting it.

In the for loop, a list of strings is passed to the for loop and some action is performed on each of these
items in the body of the loop.

for VARIABLE in LIST
do

BODY
done

Newer versions of bash also supports a version of the for loop very similar to that used in the C
programming language (but this won't be very portable).

The while loop continuously executes BODY while some EXPRESSION is true

while EXPRESSION
do

BODY
done

The until loop is the opposite of the while loop, it executes the body of the loop until the expression is
true.

until EXPRESSION
do

BODY
done

Introduction to Linux - 97
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

The if statement

if CONDITION
then
BODY

elif CONDITION
then
BODY

else
BODY

fi

The if statement is used to test one or more conditions, the basic syntax is

if CONDITION
then

BODY
fi

More complex if statements can be constructed with a second alternative

if CONDITION
then

BODY
else

BODY
fi

Or with many options

if CONDITION
then

BODY
elif CONDITION
then

BODY
else

BODY
fi

Introduction to Linux - 98
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

case and test

● case
● test (or [..])

– STRING1 = STRING2
– STRING1 != STRING2
– INTEGER1 -eq INTEGER2
– INTEGER1 -ne INTEGER2
– -f FILE
– ...

The case statement is an alternative to a chain of ifs and elifs. The syntax is very similar to that used in
the C programming language and others

case EXPRESSION in
(PATTERN)

BODY
;;
(PATTERN)

BODY
;;

esac

In the case statement, if the EXPRESSION matches any of the PATTERNs, the related BODY is
executed. It is common to use * for the last PATTERN to make a default action

A lot of these constructs rely on a true or false value to decide what action to take. Every command
returns an EXIT CODE which can be used as a true/false value (exit codes are covered later on).
We can also use the test command to test various conditions including string and integer equality,
numerical comparison, the states of files (whether they exist, are a specific type, have a particular
size and so on). the normal syntax is test expression. An alternative syntax uses []'s i.e.
[expression]

When testing variables that may not have a value, it is recommended to use the following expression to
avoid failures in test due to a missing variable,

if [${foo}X = “valueX”]

where value is the expected string in ${foo} and X is used to protect the test.

Introduction to Linux - 99
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exit codes,functions

● Exit status
– checking
– exit
– $?

● ${VARIABLE}
● Functions

– arguments
– returning status

Every Linux command returns an exit status or return code. By convention, this code is 0 when the
command has been successful and a non-zero value specific to the command when the command
fails (in the range of 1-255). Scripts can use this both to test the return codes of commands they
invoke (at the simplest level, a 0 return code is treated as true by test) and to return their own
status code (using exit <status code>). The return code from the previously executed command is
also stored in the special shell variable $?.

A significant error in shell scripts is failing to check $? after executing a command the output from
which the script depends on to complete.

When referencing variables in shell scripts, it is sometimes important to be able to embed the variable
in a string. When doing this, you need to indicate to the shell interpreter where the variable begins
and ends. This can be achieved by surrounding the variable name with {}'s - $VARIABLE is the
same as ${VARIABLE} so you can create scripts like,

echo “Results are stored in ${USER}_RESULTS.data”

Shell scripts can also be written to use rudimentary functions or procedures. The basic syntax is

FUNCTION_NAME()
{

BODY
}

A function must be defined before it can be invoked (there are no function prototypes in shell scripts).
Functions can also take parameters which use the same variables as shell script arguments ($1 ..
$9). They can also return a status using the shell construct return.

Introduction to Linux - 100
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Special devices

● Useful special devices
– /dev/null
– /dev/zero
– /dev/random and /dev/urandom

The Linux filesystem contains a number of special devices which can be useful for shell scripting.

The /dev/null device is a data sink, any data written to /dev/null is discarded by the system. It can be
useful in scripts to discard out the stdout or stderr of a command when executing it e.g.

#!/bin/sh
#
if [date > /dev/null]
then
 echo “the date command works!”
else
 echo “the date command doesn't work”
fi

The /dev/zero device is a source of \0 (also know as NUL) characters. It can be used to feed dummy
data to commands e.g

$ cat /dev/zero > zeros.txt

The /dev/random and /dev/urandom are a source of random data which be more useful than zeroes in
some cases. The system generates random data using various sources of entropy on the system
including network traffic and so on. The /dev/random device will only return random data if there
is enough entropy on the system. The /dev/urandom device will always return random data but it
may not be as random in low entropy situations.

Introduction to Linux - 101
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

sed & awk

● Both perform text transformations
● Operate on standard input (from a pipeline) or files
● Can also be used to build scripts in their own right
● Come in different flavours
● Support regular expressions

sed 's/regexp/replacement text/{flags}'
e.g. sed 's/o/_/g' foo.txt

awk -F <chars> ' { print $n } ' filename
e.g. awk -F, '{print $3, $2, $1}' csv.txt

Two other commands commonly used in shell scripts and one-liners are the commands sed and awk.
Both commands can actually be used as scripting languages in their own right or can be
incorporated into shell scripts.

They are powerful tools for transforming text in various ways (substitutions, re-arranging files and so
on) and can take their input from standard input, a command pipeline or a file.

They support complex syntax and have a lot of overlapping functionality but a common use of sed is
for performing text substitutions while awk is often used for selecting particular columns from text
data.

Introduction to Linux - 102
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Shell configuration files

● Bourne shells
– /etc/profile
– ~/.profile
– ~/.bash_profile
– ~/.bash_login

● C shells
– /etc/csh.login
– /etc/csh.cshrc
– ~/.tcshrc
– ~/.cshrc

● .bashrc (interactive and non-interactive shells)
● . and source

When a shell is started, it reads a configuration file which can be used to customise the environment
and perform housekeeping tasks on behalf of the user. Typical actions performed might include
customising the shell prompt and maybe starting a mail monitoring program such as biff.
Environment variables can also be set in this file.

Each shell has their own particular configuration file (derivatives of the bourne and csh shells
generally read either their own config file or their ancestors config files).

sh
- /etc/profile
- ~/.profile

bash
- /etc/profile
- ~/.bash_profile
- ~/.bash_login
- ~/.profile

csh
- /etc/csh.cshrc
- /etc/csh.loginc
- ~/.cshrc

tcsh
- /etc/csh.cshrc
- /etc/csh.login
- ~/.tcshrc
- ~/.cshrc

Note that there are global configuration files under /etc. The shell typically reads these before reading
the per-user configuration files in the user home directories. Environment variables such as PATH
(and other system-wide variables) should be set in the files in /etc. These variables can be reset or
extended by users in their individual configuration files.

The source or . commands can be used to read or re-read these configuration files.

Introduction to Linux - 103
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 9.1 – Scripting

1. Write a script which takes and processes the following
options. The script should display an error message
when the arguments to the script are incorrect,

● -h displays a help message
● -l performs an ls (with each line preceded by the

command name)
● -d displays the date in the form “22:34 25-Dec-2004”

2. Write a script which takes a filename as an argument
and renames that file to an all lowercase version of the
original filename.

3. Write a script that displays the following message
Hello username, today is Day of week

Introduction to Linux - 104
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 9.2 – Scripting

4. Write a script to back up any user's home directory
($HOME) using tar and gzip. Print a message and stop if
it fails at any point ($?). Set permissions on the backup
file so only the user can access the file. Name the file
backup-USERNAME-YYYYMMdd.tar.gz

5. Write a script that takes two files as arguments (-m
message.txt and -r recipients.txt). The script should
email the contents of message.txt to each email address
in recipients.txt and should also tell each user what time
it is. Start each message with 'Dear first name'.

6. Write a script to add numbers e.g. add.sh 2 2 will display
4 on output (hint: expr and read).

7. Write a script to convert miles to km.

Introduction to Linux - 105
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Networking

Introduction to Linux - 106
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Networking Concepts

Networks consist of hosts i.e. members, usually computers but possibly other participating devices
such as printers. A collection of hosts on a network is sometimes referred to as a site.

All hosts on a network, as well as being connected by some medium either wired or wireless, must also
agree on a set of protocols for communicating with each other. The OSI model is an abstract
reference model for communications and computer network protocol design. The internet protocol
suite commonly used on the internet roughly maps to the OSI model as shown in the diagram.

The everyday protocols you use are at the top (application layer). Examples include ssh (for
connecting to machines), ftp (for transferring files), http (for browsing the web) and smtp (for
sending email).

Underneath these applications, either TCP or UDP is used to actually transport data packets.
Tranmissions Control Protocol (TCP) is a connection-oriented protocol that offers guaranteed
delivery of packets (with an overhead in network handshaking that this requires) while User
Datagram Protocol (UDP) is a connectionless protocol that transmits packets on a best effort basis
without any guarantees about delivery.

TCP and UDP run on the Internet Protocol which describes the protocol used to encapsulate and
transport data around the network. It handles details such as addressing and routing. Dynamic
routing of IP packets around the network is handled by protocols including RIP, BGP and OSPF.
Internet Control Message Protocol (ICMP) is used to send status and error messages around IP
networks (this is the protocol used by tools such as ping).

At the lowest level, the Address Resolution Protocol (ARP) is used to map IP addresses back to the
physical addresses used by the underlying hardware. In the case of Ethernet networks for instance,
each network device has a unique physical address (the MAC address). ARP is used to map these
addresses to the IP addresses used at the logical network level.

The internet protocol suite can run on a variety of physical networks and media including Ethernet,
Token Ring and Wireless..

Introduction to Linux - 107
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

IP Addresses

● Address (network part and host part)
● Netmask (used to identify the network part)
● Network
● Broadcast (address all hosts on a network)

Address 192.168.0.1 11000000.10101000.00000000. 00000001

Netmask 255.255.255.0 = 24 11111111.11111111.11111111. 00000000

Host part 0.0.0.255 00000000.00000000.00000000. 11111111

Network 192.168.0.0/24 11000000.10101000.00000000. 00000000

First Host 192.168.0.1 11000000.10101000.00000000. 00000001

Last Host 192.168.0.254 11000000.10101000.00000000. 11111110

Broadcast 192.168.0.255 11000000.10101000.00000000. 11111111

Networks consts of hosts i.e. IP identifies each host on the network with a 32-bit IP address (in IP v4),
e.g

11000000 10101000 00000000 00000001

For convenience, these addresses are usually represented as 4 decimal numbers with each number
mapping to a byte of the 32-bit address (ref: ipcalc command)

e.g.
192 168 0 1

This is usually split into a network part and a host part. So an example network might be 192.168.0
which contains a maximum of 254 hosts (192.168.0.1 to 192.168.0.254). 192.168.0.0 is the
network address and 192.168.0.255 is the network broadcast address.

The netmask is used to identify the network part of an IP address.

The broadcast address for a network can be used to directly address all devices on a particular network
e.g.

ping -b 192.168.0.255

sends an ICMP message to all active hosts on the 192.168.0 network.

Introduction to Linux - 108
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Devices and Tools

● Network devices
– eth0, eth1, ...

● Tools
– ifconfig
– ping
– telnet
– traceroute
– route
– ipcalc

Linux network devices do not appear in /dev. Network devices are created by the kernel device drivers
when they recognise network hardware. They are named eth[0..n] in the order they are discovered
by the operating system.

The ifconfig command is used for querying and configuring network devices – actions possible
include assigning addresses and netmasks to devices, querying work devices and activating and
de-activating network devices e.g.

ifconfig eth0 10.0.0.1 netmask 255.255.255.0

This would configure the first network device (eth0) with the address 10.0.0.1 and set the netmask to
255.255.255.0.

Running ifconfig with the -a option or with a specific network interface returns the current
configuration for that device.

The ping command can be used to verify connectivity to a particular system on the network. It takes a
hostname or IP address as an argument and attempts to send one or more test packets to that host.
It reports whether or not it succeeds and provides statistics on the quality of the connection.

The telnet command can be very useful for testing text network protocols (as well as being a tool for
connecting to systems) e.g.

telnet www.example.com 80

Connects you to the webserver port on www.example.com allowing you to send standard HTTP
messages and review the servers response. In general, it is recommended to use ssh rather than
telnet for actually connecting to systems due to telnets use of cleartext passwords on the wire.

The traceroute can be used to see the actual path across a network that packets are taking to a certain
destination. It can be useful as a first step to diagnosing a routing problem.The route command is
used to view or set routing information (for static routes).

The ipcalc command (http://jodies.de/ipcalc) is useful for testing network and netmask configurations.

Introduction to Linux - 109
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Domain Name System - DNS

● Overview
● nsswitch.conf
● /etc/hosts
● /etc/resolv.conf
● host
● dig

dig <hostname>
dig -x <IP address>

● nslookup
nslookup <hostname>
nslookup <IP address>

The Domain Name System (DNS) is a system for mapping human-readable names to the IP addresses
used by systems on the Internet. DNS misconfiguration is a potential source of problems and
malfunctions in systems and system applications.

Linux systems use a number of sources for naming information – the system stops searching for DNS
information when it finds an answer. The order in which a system searches for DNS information is
controlled by the hosts line in /etc/nsswitch.conf. It is normally configured as

hosts files dns

This tells the system to look for DNS information in the hosts file first and, if that fails, to send a DNS
query to a known DNS server.

The hosts file is a simple text file stored in /etc/hosts which stores a list of IP addresses and hostnames
in the following format,

IP_address canonical_hostname aliases

A DNS query involves sending a request to an external server (known as a nameserver or DNS
server). The list of servers to query is stored in /etc/resolv.conf.

DNS queries can be conducted using either the nslookup or dig commands.

Introduction to Linux - 110
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 10 – Networking

1. Find the range of addresses for the 10.10.x.x network
(using a netmask of 255.255.0.0).

2. Suggest a netmask and network for splitting a
10.10.10.x address into 4 separate networks.

3. Describe the fields in the network configuration of the
first ethernet device on the Linux server.

4. Verify that the other server is running.
5. Identify the network path to that server.
6. Verify that there is a DNS entry for both servers (what

is it?).
7. Verify if the mail service is running on the server (port

25).

Introduction to Linux - 111
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

The System

Introduction to Linux - 112
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

The super-user account

● The root account
● Typical super-user activities

– Filesystem maintenance
– Software installation
– Reviewing log-files

● su
● sudo

– /etc/sudoers

Linux uses a dedicated user account for system administration – this user is usually known as root and
has a UID of 0. The root account usually has access to change anything on the system. You should
only use the root account when it is absolutely necessary, not for day to day activities. Be
especially careful with the root account and the rm -rf command!

When performing root activities, you can either connected (by ssh or telnet) to the system as the root
user or you can use the su command to temporarily assume the privileges of the root user. e.g.

auser> su
Password: *******
root>

The su command can actually be used to change identity to any other system user and can sometimes
be useful for verifying the configuration of another system account (particularly when invoked as
su - <user> which replaces your current environment with the user's environment).

An alternative to giving users full access to root privileges is the use of the sudo command. This
allows a system to be configured to allow certain users to run certain commands as root without
having full access. The users and commands they can run are described in the /etc/sudoers file. To
invoke a command with root privileges a users calls sudo command. sudo also logs a lot of
information about successful and unsuccessful attempts to invoke it providing a useful audit trail
of root activities (see next slide for details about system logs). Using sudo also prevents lots of
users from knowing the root password.

Introduction to Linux - 113
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

System log files

● syslogd
● /var/log

– messages
– syslog
– apache/
– ...

● Log rotation
● Reviewing
● dmesg

Linux systems log a lot of information about system activity to a series of log-files under /var/log.
These log-files can useful when troubleshooting, reviewing system activity or tracking down
system intrusions.

System logging is managed by syslogd which is configured with /etc/syslog.conf. This file tells syslogd
what messages to log and where to log them.

Most Linux distributions log all important messages to /var/log/messages. Additional information is
often logged to other log-files under /var/log.

A lot of applications log their activity to separate log-files, applications such as the Apache webserver
log their activity to files in either /var/log/apache or /var/log/httpd depending on the distribution.

A program called logrotate ensures that these log-files are archived and deleted periodically. It can be
configured to rotate logs when they reach a certain age or a certain size (without log rotation, the /
var/log partition would eventually fill up possibly causing system failures). Logrotate can be
reconfigured by editing /etc/logrotate.conf/.

System log-files should be periodically reviewed to identify any problems on the system. Basic tools
including grep can be used to scan log-files for particular events or to review the behaviour of
specific system daemons. System log-files can be monitored continuously with the tail -f
command.

The dmesg command dumps the current output from the kernel log buffer – this usually contains the
system boot messages but if there is a lot of kernel activity on the system it may be overwritten by
newer messages.

Introduction to Linux - 114
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Services

● Starting/stopping
● Adding new ones
● /etc/init.d
● Run-levels

– /etc/inittab
– /etc/rcn.d

When init starts, it starts any system commands that will be run in the background – these are called
daemons or services and include commands like the system logger (syslogd), the internet super-
server (inetd), the ssh service (sshd) and others. These are usually started with by a collection
scripts in /etc/init.d.

The scripts in /etc/init.d can be used to start, stop and check the current status of these services. New
scripts can also be added in here if the administrator wishes to manually add new services to the
system.

A Linux system can be started in various configurations. For example, if a system needs maintenance,
it can be run in single user mode which prevents any other users from logging in and stops all
non-essential services. Similarly, a system can be started in a multi-user configuration with no
network services like webservers running.

These different configurations are specified by using what Linux calls run-levels. Linux has a number
of standard run-levels (1 is single-user, 3 is full multi-user text mode, 5 is full multi-user graphical
mode) and the system can be switched between the run-levels with the telinit command.

Linux systems contain a series of directories under /etc or /etc/rc.d called rc0.d, rc1.d, rc2.d and so on.
Each of the directories contains symbolic links to the scripts in /etc/init.d specifying what services
should be started and stopped for each run-level and specifying what order these services should
be started and stopped. Red Hat provides the chkconfig tool for managing these or they can be
modified manually. Scripts start with either “S” or “K” followed by a number. “S” scripts start a
service, “K” scripts stop a service. The scripts are executed in increasing numeric order.

Introduction to Linux - 115
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Software packages

● Overview
– Red Hat (rpm)
– Novell / SuSE (rpm)
– Debian (deb)
– Slackware (tgz)

● Dependencies
● Versions
● Package contents

– Packaged software
– Installation software
– Package information
– Dependency information

Linux systems contain a wide range of programs and applications. You can install new
software on a system by downloading the source (when available) and compiling it
yourself but this is time-consuming and can be a maintenance nightmare (especially
when you want to move to a newer version of the program while preserving your
original configuration).

Linux distributions have taken a number of approaches to software packages in order to
reduce this maintenance overhead and simplify the installation and upgrading of
software packages. There are two main formats used for packaging software on Linux
systems – RPM – a format introduced by Red Hat (and now used also by SuSE,
Mandrake and a range of others) and DEB – a format introduced by the Debian project
(and used by various Debian derivatives including Knoppix, Ubuntu, Progeny and
Xandros). The original “packaging format” used by some distributions (and still used by
Slackware) – TGZ is simply an abbreviation of tar.gz which indicates the technologies
used.

In all cases, the software package usually contains the following:
● information about the package
● scripts to manage installation, upgrades and deinstallation
● the software to be installed which can be either binaries or source code
● details of any libraries or other pieces of software that the package requires to operate

correctly.

Software packages are typically compiled against certain versions of libraries for a specific
architecture – package managers will only allow the package to be installed on a system
that matches these requirements. Some package managers (particular the Debian ones)
automate the management of these dependencies upgrading packages to required
versions automatically if needed.

Introduction to Linux - 116
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

RPM

● Installing
rpm -ivh <package>.rpm

● Listing
rpm -qa

● Removing
rpm -e <package>

● Advanced uses
rpm -qi <package>
rpm -qR

● Alternatives
– yum
– red carpet

Red Hat and SuSE use the RPM packaging system and the rpm command to manage
packages. There are also various graphical tools for managing the packages on the
system but it is useful to be familiar with the rpm command especially if you need to
install 3rd party software on a Red Hat system.

● To install a new package, rpm -i <file name> is the minimum required. Typically, rpm
-ivh <file name> is used to provide some more feedback on the installation process.

● If a version of the package is already installed, you can use the upgrade option instead of
the install: rpm -Uvh which de-installs the other versions of the package after installing
this version.

● To review what packages are already installed on the system, rpm -qa is used.
● To remove (erase) a package, use rpm -e.

The rpm command has a lot of more advanced features (the current man page for the rpm
command runs to about 800 lines). The -q option can be used for more than just listing
all installed packages, it can also retrieve information for individual packages including

-qi <package> lists information about <package>
-qR <package> lists dependencies for <package>
-ql <package> lists all files in <package>
-qf <file> lists the package which owns <file>
-q –scripts <package> lists the scripts used by <package>

To run any of these commands against an uninstalled RPM, add -p <file name>

yum
Newer Fedora Core releases include a more advanced package management tool called yum.

This provides advanced features such as automatic dependency management. Red Hat
Enterprise Linux does not include the yum tool by default (but it can be made to run on
RHEL), relying instead on the Red Hat Package Management Tool (next slide).

red carpet
Newer versions of SuSE provide a more advanced package management tool called red

carpet. This is a graphical tool for installing new packages and updates from SuSE
servers. It automatically resolves dependencies, selecting additional packages for
installation from SuSE when required.

Introduction to Linux - 117
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 11 – The System

1. Write a script that sends an email to some address
containing a list of todays log messages from the ssh
daemon.

2. Write a script to remove all log-files that meet the
following criteria:
 older than 10 days
 larger than 1 Megabyte

3. Check the status of the webserver service.
4. Check the current runlevel. List the services started

and stopped for that runlevel.

Introduction to Linux - 118
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Developing on Linux

Introduction to Linux - 119
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

C on Linux

● Compilers
– GCC

● C, C++
● Objective-C
● Fortran
● Ada

– Intel
● C, C++
● Fortran (F77, F95)

– The Portland Group
● C, C++
● Fortran (F77, F95)

Compilers
The standard C compiler used on Linux is the GNU C Compiler (GCC), versions of which can be

used to compile C, C++, Fortran and other languages. There are also a number of commercial
alternatives for specific platforms. GCC's main strength is its portability to different platforms,
it is not noted for performance.

Commercial alternatives include,
● Intel sell high performance C, C++ and Fortran compilers which give better performing code

in at least some cases when compiling code for Intel processors.
● The Portland Group sell high performance C, C++ and Fortran compilers for 32-bit and 64-bit

x86 platforms (both Intel and AMD processors). The Portland compilers have a good
reputation in the scientific community for HPC applications.

Users of architectures other than x86 may have the option of using a compiler from their hardware
vendor.

Introduction to Linux - 120
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Java on Linux

● JRE vs. JDK
● Installing
● What version of Java?
● GCJ
● Environment Variables
● IDEs

– Eclipse
– Netbeans

JRE is the Java Runtime Environment. This is used if you want to run java applications. It
includes a JVM (Java Virtual Machine) and run time libraries.

JDK is the Java Development Tool Kit. This is used when developing java applications. It includes
the javac compiler, jar tool, compilation time libraries and other components. JDK also
includes the runtime environment.

Java is not packaged with most Linux distributions, but is available as a free download from Sun
Microsystems. Download the corresponding an RPM or .bin binary file compiled for platform/os,
and follow the installation guide provided.

Java is installed as an executable. Discover which java version is in your path using java -version
command.

No environment variables are required to run java itself, but the following may be useful when running
some java applications.

$CLASSPATH - used to define the directories and jar files to be searched for classes at runtime. NB:
Rather than using CLASSPATH environment variable, java can be started with the -classpath
option to explicitly define the search path.

$JAVA_HOME - often used to define where java is installed on the system.
$JDK_HOME - occasionally used to defined where the toolkit is installed.

There are a number of free IDEs available for Java development on Linux including Eclipse (
http://www.eclipse.org/) and Netbeans (http://www.netbeans.org/).

Introduction to Linux - 121
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Other scripting languages

● Perl
– powerful text manipulation
– commonly used for system administration tasks
– syntax similar to shell and C

● Python
– newer scripting language
– more emphasis on OO
– emphasises readability of code
– uses indentation rather than curly braces to delimit blocks

● Ruby
– very strong OO emphasis
– intended to be easy to learn
– Ruby on Rails - web application framework

Introduction to Linux - 122
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Exercise 12 – Developing on Linux

1. Check what version of gcc is installed.
2. Write a simple hello world program in C and compile it

up with gcc.
3. Check what version (if any) of Java is installed.

Introduction to Linux - 123
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Advanced SSH topics

Introduction to Linux - 124
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Keys

● Uses
– Eliminates passwords
– Automation (remote commands)
– Restrict certain commands to certain users and hosts

● HOWTO
1) Generate your own set of keys

(local host) ssh-keygen -t rsa
1) Copy the public key to the system and account you want to

access
(local host) scp ~/.ssh/id_rsa.pub user@hostname:.
(remote host) cat id_rsa.pub >> ~/.ssh/authorized_keys

1) Verify you can login to that account without a password
(local host) ssh user@hostname

Introduction to Linux - 125
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

Tunnelling

ssh -L portA:hostA:portB username@hostB

(open a tunnel between portB on hostB and portA on hostA)

● Useful for securely using insecure services through firewalls.
● Can tunnel any protocol.
● Can chain multiple tunnels.

Scenario
You have a network resource somewhere that you want to access (lets say a mail server or a

webserver). There are multiple firewalls between you and it through which you only have ssh
access (as the network administrators do not want to expose the mailserver or webserver to general
access from the internet). You can use ssh tunnels to access the resource.

Example
System anoa is located on a private network which has a system called flame acting as a gateway to the

internet. System beta is an intranet webserver on another private network which has a
firewall/gateway system alpha. To access the intranet webserver on beta from anoa, we can create
a series of SSH tunnels as follows,

Chain of SSH tunnels
anoa (9995) → (9995) flame (9995) → (9995) alpha (9995) → (80) beta
Virtual connection (over the tunnels)
anoa (9995) → → → → → → → → → → → → → → → → (80) beta

Note that each machine can only see the next machine in the chain, so anoa cannot connect directly to
alpha or beta.

Procedure
1. Connect port 9995 on anoa to port 9995 on flame. The ports used are arbitrary, you don't need to

use 9995 on both hosts.
anoa> ssh -L 9995:127.0.0.1:9995 smulcahy@flame

2. Connect port 9995 on flame to port 9995 on alpha.
flame> ssh -L 9995:127.0.0.1:9995 smulcahy@alpha

3. Connect port 9995 on alpha to port 80 on beta.
alpha> ssh -L 9995:127.0.0.1:80 smulcahy@beta

4. On anoa, open a web browser and point it http://127.0.0.1:9995. You should see the output from
beta's web server.

Syntax
ssh -L portA:hostA:portB username@hostB

means,
open a tunnel between portB on hostB and portA on hostA.

By default, only the localhost can connect to the portA. You can allow other hosts to connect to
the forwarded port by using the -g switch to rss (or by ticking the box in putty "Local ports accept

connections from other hosts".

Introduction to Linux - 126
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

In closing ...

● Summary
● Next steps
● Questionaire

Thank you and well done!

Introduction to Linux - 127
© Applepie Solutions 2004-2008, Some Rights Reserved
Licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 3.0 Unported License

